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Introduction

...as to what probability is and how it is connected with statistics,
there has seldom been such complete disagreement and break-
down of communication since the Tower of Babel. —Savage

How can a discipline, central to science and to critical think-
ing, have two methodologies, two logics, two approaches that
frequently give substantially different answers to the same prob-
lems? —Fraser

Unlike most philosophical arguments, this one has important
practical consequences. The two philosophies represent com-
peting visions of how science progresses and how mathematical
thinking assists in that progress. —Efron
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Intro, cont.

With 100+ years of experience, statisticians should be the
authorities on uncertainty, but instead we side-step:

ASA President’s Task Force statement: Different measures
of uncertainty can complement one another

Lack of answers → confusion and distrust2

Not having the answers is OK, but statisticians largely have
no motivation to find answers, complacency

I think this problem is too important to ignore

Is complacency in the face of contradiction acceptable for a
central discipline of science? —Fraser

2e.g., replication crisis in science
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Intro, cont.

Forward progress on foundations requires new insights

Fortunately, we have giants’ shoulders to stand on

Fisher
Dempster & Shafer
Dubois
...

My basic claim: probability theory is lacking, reliable inference
& UQ requires different considerations

“Different considerations” = imprecise probability

That is, imprecision is necessary, not a choice

I’m proposing a general imprecise-probabilistic framework:

consonant structures, possibility theory
balances Bayesian and frequentist reliability
can do things Bs & Fs can’t
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This talk

precision pushes likelihood too far → unreliability

consonant beliefs/possibility = “correct” mode of imprecision

possibilistic IM via probability-to-possibility transform

properties & examples

partial prior IMs
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Warm-up

Simple textbook example, hits on the key issues

Cancer screening

data T = {test positive}
hypothesis H = {has cancer}
model: P(T | H) = 0.95 and P(T | Hc) = 0.05
prior P(H) = 0.01

Question: given a positive test — cancer or not?

Polarizing example (re: Fraser)

Bayesians infer Hc

non-Bayesians infer H
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Warm-up, cont.

Non-Bayesian solution:

basic law of likelihood reasoning

P(T | H)

P(T | Hc)
=

0.95

0.05
= 19� 1 =⇒ infer H

or can get a p-value: πT (H) = 1 =⇒ infer H

Bayesian solution:

prior to posterior update is

u 7→ 0.95 u

0.95 u + 0.05 (1− u)

if u = 0.01, then P(H | T ) = 0.16
0.16� 1

2 =⇒ infer Hc
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Warm-up, cont.

Manski’s Law of Decreasing Credibility.

Credibility of inference decreases with the strength of assumptions

If we genuinely know P(H), then

that info shouldn’t be ignored
Bayesian solution might make sense

If we don’t know P(H), then

absurd to pick P(H) = 0.5 (say) and claim “objectivity”
better to report the range of P(H | T ) as prior varies
this “Bayes” solution agrees with non-Bayes!

Most likely case: we know something about P(H)

e.g., we’re pretty sure P(H) ∈ [ulo, uhi]
textbooks are silent about this most likely case!
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Setup

Data Y ∈ Y, observed value y

Model {PY |θ : θ ∈ T}
Uncertain true value is Θ, generic values denoted by θ

For now, assume no prior info about Θ is available

Goal: UQ/inference about Θ, given Y = y

For example:

model (Y | Θ = θ) ∼ N(θ, 1)
observation Y = y , e.g, y = 7
is the hypothesis “Θ > 8” supported?
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Setup, cont.

It would surely have been astonishing if all the complexities of
such a subtle concept as probability in its application to scientific
inference could be represented in terms of only three concepts—
estimates, confidence intervals, and tests of hypotheses. Yet
one would get the impression that this was possible from many
textbooks purporting to expound the subject. —Barnard

Despite what textbooks say

inference isn’t just estimation, testing, and confidence sets

A scientist whose never seen a stat textbook isn’t going to ask
specifically for a confidence interval!

The UQ I’m after is richer & more informative
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Setup, cont.

Statisticians want numerical measures of the degree to which
data support hypotheses. —Hacking

UQ about Θ, given Y = y?

Hacking says we want “numerical measures of...”

Gut reaction:

“numerical measures of...”⇐⇒ probability
i.e., return a “posterior” (Θ | Y = y) ∼ Qy

However: probability theory generally doesn’t provide reliable
UQ in the context statistical inference
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Pushing likelihood too far

The function of the θ’s... is not however a probability and does
not obey the laws of probability; it involves no differential ele-
ment dθ1 dθ2 dθ3...; it does none the less afford a rational basis
for preferring some values of θ... to others. —Fisher

Data + model =⇒ likelihood: θ 7→ Ly (θ)

Fisher’s warnings “likelihood 6= probability” are familiar

But we don’t take this seriously

Fisher’s point:3 for a hypothesis “Θ ∈ H”

“no differential element” =⇒ size of H has no bearing
only relative likelihood values on H are relevant

3M., arXiv:2303.17425
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Pushing likelihood too far, cont.

Default prior Bayes (and others):

neither prior nor likelihood has meaningful differential element
how then can posterior’s differential element be meaningful?

e.g., {Y ∼ N(Θ, 1), y = 7} Qy = N(7, 1)

two hypotheses H = (6.5, 7] and H ′ = (−∞, 7]
clearly, Qy (H ′)� Qy (H)
but is H ′ really more supported by data than H?

To allow the size of the crowd of [possibilities]... to influence the
value of the [plausibility] assigned to any particular hypothesis,
would be like weakening one’s praise for the chief actors in a play
on the ground that a large number of supers were also allowed
to cross the stage. —Shackle
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Why imprecision?

Pushing likelihood too far has consequences

In particular, the following would be problematic:

for some false hypotheses H 63 Θ
the rv Y 7→ QY (H) tends to be large under PY |Θ

False confidence4 is a particular form of unreliability that all
probabilistic UQ suffers from

False confidence theorem.

Let QY be any data-dependent probability for Θ. For any thresholds
(ρ, τ), there exists hypotheses H ⊂ T such that

H 63 Θ and PY |Θ{QY (H) > ρ} > τ.

4Balch, M., & Ferson 2019, Proc Roy Soc A, arXiv:1706.08565
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Why imprecision?, cont.

Money doesn’t grow on trees. —Dad

New perspective on the false confidence theorem5

there exists gambles that are acceptable for each y
but are unacceptable, i.e., loss-prone, on average

I’ll skip the detailed justification here...

But note the departure from how (coherent) prob works:

if E(Z | Y = y) ≥ 0 for all y
then “E(Z )” shouldn’t be negative

5Similar results can be found in, e.g., Ch. 7 of Walley’s 1991 book, but
these don’t directly refer to false confidence
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Why imprecision?, cont.

[Fisher] was the world’s master of quantifying uncertainty, hav-
ing developed many of the... procedures for doing so. —Pearl

The need for imprecision in UQ wasn’t lost on Fisher

[A p-value]... does not justify any exact probability statement
no exact probability statements can be based on [conf. sets]

“Fisher’s biggest blunder” (Efron) was just that he didn’t find
the right mathematical formulation

However:

Fisher + Dempster → origins of imprecise prob
Fisher + Neyman → confidence sets, inherently imprecise6

6M., arXiv:2112.10904
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What imprecision?

If not probability, then what? Imprecise probability

imprecise 6= inaccurate
Manksi: limiting our precision for credibility’s sake

Roughly, imprecise probability = sets of probabilities

For example:

roll a 6-sided die, one face is called “Ace”
suppose I only know that P(Ace) ∈ [0.1, 0.2]
a set of dice, don’t know which will be rolled
should I assume a fair die, and be susceptible to sure monetary
loss, just for the sake of precision?
or assume only the info that’s given, avoid sure loss and
maintain credibility, but give up precision?
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What imprecision?, cont.

Yes, whether statisticians acknowledge it or not

we’re dealing with sets of (Y ,Θ) joint distributions!

Explanation:

e.g., the confidence level of a set estimator C (Y ) is

sup
θ

PY |θ{C (Y ) 63 θ} = sup
all priors Q

∫
PY |θ{C (Y ) 63 θ}Q(dθ)︸ ︷︷ ︸

linear functional of Q

“=” because the supremum of a linear functional over a
convex set is on the boundary (point masses)

Frequentist = “every prior”
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What imprecision?, cont.

If even frequentists have sets of (Y ,Θ) joint dist’ns, then

imprecision in inference is clear/unavoidable
helps to explain the false confidence phenomenon

Data-dependent imprecise prob for (reliable) UQ...

Definition — inferential model (IM).

given data y , model, etc

to every H ⊆ T, assign a pair of numbers

Πy (H) and Πy (H)

y -dependent measures of support for and plausibility of H
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What imprecision?, cont.

There’s a wide range of probability alternatives

belief functions
consonant beliefs/possibility measures
credal sets
lower/upper previsions
...

All have advantages and disadvantages

My focus: consonant belief functions/possibility measures

I’ll justify this later; for now I defer to Shafer...

Specific items of evidence can often be treated as consonant,
and there is at least one general type of evidence that seems
well adapted to such treatment. This is inferential evidence—
the evidence for a cause that is provided by an effect. —Shafer
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What imprecision?, cont.

Possibility theory is the simplest imprecise probability

Dubois and others have written extensively on this

Similar to probability theory

determined by a “density function”
different calculus — optimization replaces integration
no differential element!

Specifically:

possibility contour θ 7→ πy (θ) with supθ πy (θ) = 1
and then define

Πy (H) = sup
θ∈H

πy (θ) and Πy (H) = 1− Πy (Hc)

What makes the IM output meaningful is its properties
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What imprecision?, cont.

Possibility contour plot

Hypothesis H = [3, 5]

Πy (H) via optimization

“most possible member”
no differential element
size of H is irrelevant

Level set defines interval of
“sufficiently possible” θs
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What imprecision?, cont.

Possibility theory for statistics isn’t my idea!

A very natural choice of possibility contour/measure in stat
applications (e.g., Shafer 1976, Ch. 11)

relative likelihood R(y , θ) = Ly (θ)/ supϑ Ly (ϑ)
for fixed Y = y , set

πy (θ) = R(y , θ), θ ∈ T

and then Πy (H) = supθ∈H πy (θ)

Further investigation into this proposal:

Wasserman (1990), Canad. J. Stat.
Denoeux (2014), IJAR
...

Shafer later (JRSS-B, 1982) rejected the idea in general

I think it just doesn’t go far enough...
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Possibilistic IMs

Special case of a more general construction7

Workhorse: imprecise-probability-to-possibility transform8

In the “no-prior” case, this takes a simple form:

same relative likelihood R(y , θ) = Ly (θ)/ supϑ Ly (ϑ)
define a possibility contour

πy (θ) = PY |θ{R(Y , θ) ≤ R(y , θ)}, θ ∈ T

then Πy (H) = supθ∈H πy (θ), etc.

Not unfamiliar...9

Unexpected connections to fiducial inference (later)

7M. arXiv:2211.14567
8e.g., Dubois et al (2004), Rel. Comput.; Hose’s 2022 PhD thesis
9M. arXiv:1203.6665 and M. arXiv:1511.06733
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Possibilistic IMs, cont.

What makes the IM output meaningful is its properties. —M

It is unacceptable if a procedure... of representing uncertain
knowledge would, if used repeatedly, give systematically mis-
leading conclusions. —Reid & Cox

Strong validity theorem.

The new IM construction above is strongly valid, i.e.,

sup
Θ

PY |Θ{πY (Θ) ≤ α} ≤ α, α ∈ [0, 1]

Remarks:

Most basic property, familiar for the no-prior case
Implies no false confidence
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Possibilistic IMs, cont.

Corollary.

1 the test “reject Θ ∈ H iff Πy (H) ≤ α” satisfies

sup
Θ∈H

PY |Θ{ΠY (H) ≤ α} ≤ α, α ∈ [0, 1], H ⊆ T

2 the region Cα(y) = {θ : πy (θ) > α} satisfies

sup
Θ

PY |Θ{Cα(Y ) 63 Θ} ≤ α, α ∈ [0, 1] (1)

These are the frequentist guarantees we know & love:

C ′α(y) = {θ : R(y , θ) > α} doesn’t satisfy (1)
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Possibilistic IMs, cont.

There’s a sort of converse to the above corollary

Suggests consonance is inherent in frequentism

No time to get into the details, but...

Theorem (M., arXiv:2112.10904).

Let {Cα : α ∈ [0, 1]} be a family of confidence regions for Φ = φ(Θ) that
satisfies the following properties:

Coverage. infΘ PY |Θ{Cα(Y ) 3 φ(Θ)} ≥ 1− α for all α

Nested. if α ≤ β, then Cβ(y) ⊆ Cα(y) for all y

Compatible. mild, but too messy...

There exists a strongly valid possibilistic IM for Θ whose derived marginal
plausibility regions C?α(y) for Φ satisfy

C?α(y) ⊆ Cα(y) for all (y , α) ∈ Y× [0, 1].
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Possibilistic IMs, cont.

Theorem.

The possibilistic IM’s error rate control is uniform in H, i.e.,

sup
Θ

PY |Θ
{

ΠY (H) ≤ α for some H 3 Θ} ≤ α

Inference goal isn’t just “test one H and done”

Often the goal is to probe

e.g., if null is rejected, find other H’s that are supported
follow-ups depend on data, so H-wise control isn’t enough

Corollary provides error rate control under probing10

10Cella and M. (202x), IJAR, arXiv:2304.05740
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Possibilistic IMs, cont.

Computation usually requires Monte Carlo

For each θ on a grid

simulate independent Y
(m)
θ ∼ PY |θ, m = 1, . . . ,M

approximate the contour by

πy (θ) ≈ 1

M

M∑
m=1

1{R(Y
(m)
θ , θ) ≤ R(y , θ)}

Simplifications are possible in specific examples

Importance sampling can also be used to lower expenses
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Possibilistic IMs, cont.

Validity concerns errors like the following:

true hypotheses H that I assign small Πy (H)
true Θ is outside my confidence set

Efficiency concerns other kinds of errors:

false hypotheses H that I assign not-small Πy (H)
false θ values inside my confidence set

Efficiency is more difficult to describe mathematically

One (rare) case where a comparison is clear

two IMs with contours πy and π̃y
if πy ≤ π̃y ∀ y , then former is more efficient than latter

Roughly, efficiency to me means that πY tends to be more
tightly concentrated as a function of Y
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Examples: a couple uniforms

Plots of θ 7→ πy (θ) for two different uniform models

PY |θ = Unif{1, 2, . . . , θ}, Y(n) = 10, n = 2
PY |θ = Unif(θ, θ2), (Y(1) = 281,Y(n) = 9689), n = 25
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Example: binomial

PY |θ = Bin(n, θ)

Plots of the contour θ 7→ πy (θ) — focus on black curve11

Contours: n = 8 (left) and n = 16 (right), θ̂ = 0.5
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11Others: partial prior IMs that assume “90% sure that Θ ≤ 0.6”
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Example: bivariate normal correlation

Bivariate normal model:

means are 0, variances are 1
unknown correlation Θ

Simulations to check validity & efficiency
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Example: two-parameter normal

PY |θ = N(µ, σ2)

Data: n = 10, (µ̂, σ̂) = (0, 1)

Map of the IM possibility contour
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Example: two-parameter gamma

PY |θ = Gamma(θ1, θ2)

Simulated data, n = 25, θ1 = 7 and θ2 = 3

Map of the IM possibility contour

Computation via importance sampling
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Example: two binomials

Clinical trial:

association between treatment & control?
let Θ denote the log odds ratio12

Data (n1, y1) = (43, 1) and (n2, y2) = (39, 2)

Focus on the black curve only13
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12Nuisance parameters eliminated via conditioning (M., arXiv:2309.13454)
13Red is a partial prior IM that assumes “E|Θ| ≤ 1”
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Example: Behrens–Fisher

Difference of normal means, general variances — unsolved!

New marginal IM solution14

Strong validity is guaranteed, sim to check efficiency:

difficult unbalanced case, (n1, n2) = (2, 20)
µ1 = 2, µ2 = 0, σ2

1 = 1, σ2
2 = 2

compare coverage prob of 90% confidence intervals

Method Coverage Prob
Hsu–Scheffe 0.9738

Jeffreys 0.9296
Ghosh & Kim 0.7873

Welch 0.8362
1st order 0.7399

Fraser et al 0.8617
IM 0.9082

14M. (2023), arXiv:2309.13454
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Possibilistic IMs in ML15

15“Possibilistic” connection drawn in M., arXiv:2309.13454
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IMs and fiducial

Imprecise prob corresponds to sets of probabilities

This (non-empty) set is called the credal set

C (Πy ) = {Qy ∈ probs(T) : Qy (·) ≤ Πy (·)}

For possibility measures Πy , there’s a characterization:16

Qy ∈ C (Πy ) ⇐⇒ Qy ( {θ : πy (θ) > α}︸ ︷︷ ︸
100(1− α)% pl region

) ≥ 1− α

i.e., elements of C (Πy ) are confidence distributions

More can be said, with additional structure

16Destercke & Dubois, Ch. 4 of Intro to IP
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IMs and fiducial, cont.

Suppose the model has a group transformation structure

e.g., location–scale models

With such structure, all the following methods give the same
solution for probabilistic UQ:

default-prior Bayes
(generalized) fiducial
...

Theorem (M., ISIPTA’23, arXiv:2303.08630).

Under the structure above, let Q?
y be the fiducial solution and Πy

the possibilistic IM. Then Q?
y ∈ C (Πy ) and, moreover,

Q?
y ({θ : πy (θ) > α}) = 1− α, all α ∈ [0, 1]
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IMs and fiducial, cont.

Directional data, i.e., angles or points on a circle

simple von Mises model with unknown mean direction Θ
group structure: Θ plays the role of a rotation

Plots show data,17 fiducial density, and IM contour18
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17From Example 1 in Mardia’s Directional Statistics
18Details in M., ISIPTA’23, arXiv:2303.08630
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Example: causal inference19

Does the treatment cause a change in the outcome?

Focus here on randomized experiments in finite populations

potential outcomes {Yi (0),Yi (1)} are fixed, i = 1, . . . , n
randomization determines which of Yi (0), Yi (1) are observed
covariates xi might also be available

Interest is in the differences “Yi (1)− Yi (0)”

Neyman defines average treatment effect

τ =
1

n

n∑
i=1

{Yi (1)− Yi (0)}

and then does the usual “estimate ± 2 × std err”

19This is new/ongoing work
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Example: causal inference, cont.

Causal inference requires causal hypotheses. —Pearl

My opinion: Neyman falls short of “causal hypotheses”

knowing τ doesn’t explain the effect of treatment
i.e., the unit level differences Yi (1)− Yi (0) could vary wildly,
positive and negative, and give the same τ

My view:

no free lunch, we need to work for causation
specifically, we need to posit a sort of “model” that directly
explains the unit-level differences

But (a new perspective on) Fisher’s approach20 does offer
explanations and, hence, a route to valid causal inference

20Often called “Fisher’s randomization test”
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Example: causal inference, cont.

My (new?) perspective on Fisher’s proposal:

user posits Yi (1)− Yi (0) = h(xi ,Θ) for all i
where h is a given function
and Θ is the causal effect to be inferred

If I know Θ = θ and observed y ,

then I know the missing potential outcomes
hence an explanation of treatment effect

Too-quick explanation of the strategy:

posit a value θ, determines {Yi (0),Yi (1)}
if I know the potential outcomes, then I can get evaluate the
contour (p-value) at θ via randomization/Monte Carlo
repeat for all θ on a grid
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Example: causal inference, cont.

Simple case, no x ’s

Monte Carlo approx’n of
IM contour via random
treatment allocations

Simulated data:

n = 20
true effect is 3
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Example: causal inference, cont.

Slightly more complicated example:

n = 30
one covariate
h(x , θ) = θ1 + θ2x

Contour for Θ (left), marginal contour for h(x?,Θ) (right)
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FAQs

There are a couple questions I’m often asked

why consonant structures?
you don’t employ the full power of the DS calculus — why?

Below I offer answers to these questions
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FAQs: Why consonance?

Consonant beliefs are very special, extra structure

In particular, if (Πy ,Πy ) is consonant, then

Πy (H) > 0 =⇒ Πy (H) = 1

Πy (H) < 1 =⇒ Πy (H) = 0

Some might say a consonant IM is “too imprecise”

So justification is needed for imposing such structure

I have two reasons for this, see below
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FAQs: Why consonance?, I

In general, strong validity is needed to ensure that the IM
induces confidence sets with nominal coverage probability

If we take strong validity + efficiency as desiderata, then
consonance is necessary

Proposition (M., arXiv:2211.14567).

For any strongly valid IM with upper prob Γy , there exists a strongly
valid consonant IM with upper prob Πy such that

Πy (H) ≤ Γy (H) for all H
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FAQs: Why consonance?, II

IM’s output: not bounds on a “true” precise prob for Θ

So, consonance 6=⇒ loose bounds on this “true” prob

In fact, tighter bounds wouldn’t add value to the IM

Recall Cournot’s Principle21

roughly, only the small & large probability values are
meaningful in the real world
i.e., suggests what won’t & will happen, respectively

For us, Cournot says inference can be made only when

Πy (H) is large or Πy (H) is small

That the complementary term is trivial doesn’t matter

21Shafer & Vovk (2019), e.g., Ch. 10.2
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FAQs: Why no DS rules?

Note: I’m not following any formal rules (e.g., Dempster’s)

that is, Π(y1,y2)(·) 6= Πy1
(·) ? Πy2

(·) for any rule ?

This is problematic to some...

My perspective is different:

my top priority is validy + efficiency
enforcing a ?-identity like above is a constraint
can’t be more efficient with constraint than without
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FAQs: Why no DS rules?, cont.

Of course, if necessary, I could use such a rule

either because I insist on it
or if the problem doesn’t give me access to the full data (y1, y2)
e.g., if I only have access to πy1 & πy2 , so couldn’t directing
construct π(y1,y2) as described above

Natural idea: use a consonance-preserving rule,22 e.g.,

πy1(θ) ? πy2(θ) =
πy1(θ) ◦ πy2(θ)

supϑ πy1(ϑ) ◦ πy2(ϑ)
, ◦ = t-norm

Question: Is this (strongly) valid?

22Dubois & Prade (Comp Intell 1988); M. & Syring, ISIPTA’19
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Partial prior IMs

frequentist Bayesian

every prior one prior← some priors →

This goes back to the warm-up example...

There’s a spectrum of problems indexed by prior info

Key observations:

spectrum can’t be described with ordinary probability
applying Bayes to a set of priors is inefficient (dilation)
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Partial prior IMs, cont.

frequentist Bayesian

every prior one prior← some priors →

Especially important in high-dim problems

Main-stream methods for regularization are awkward:

Fs’ penalties aren’t part of the model/assumptions
Bs’ priors impose more structure than is justified

New idea:

incorporates into the model exactly the structural assumptions
that can be justified, no more & no less
different from generalized/robust Bayes
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Partial prior IMs, cont.

For simplicity:

precise model with likelihood Ly (θ)
imprecise prior via possibility contour q(θ)

Πy is a possibility measure given by

Πy (H) = sup
θ∈H

πy (θ), H ⊆ T

where the contour function23 is

πy (θ) =

∫ 1

0

[
sup

ϑ:q(ϑ)>s

PY |ϑ{R(Y , ϑ) ≤ R(y , θ)}
]
ds

and R is a “relative likelihood”

R(y , θ) =
Ly (θ) q(θ)

supϑ∈T Ly (ϑ) q(ϑ)

23This is a special kind of Choquet integral...
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Partial prior IMs, cont.

Strong validity theorem.

The new IM construction above is strongly valid (relative to the
partial prior information), i.e.,

PY ,Θ{πY (Θ) ≤ α} ≤ α, α ∈ [0, 1]

PY ,Θ is the upper joint dist’n:

PY ,Θ(Y ∈ A,Θ ∈ H) = sup
Q∈C (q)

∫
H

PY |θ(Y ∈ A) Q(dθ)

Above isn’t as strict as validity wrt vacuous prior

creates an opportunity for improved efficiency
without sacrificing error control guarantees
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Partial prior IMs, cont.

Statistical procedures (tests & conf sets) derived from the
partial prior IM have properties similar to those above

There are also some corresponding behavioral properties

In particular,24

treated as a data-dependent update of a partial prior to a
“posterior” (Πy ,Πy ), it avoids sure loss
it satisfies a little more than no-sure-loss, but not coherent

Observation deserving further investigation:

generalized Bayes is coherent but often inefficient
partial prior IM is less conservative/more efficient
IM’s contraction–dilation balance?

24M., arXiv:2211.14567
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Partial prior IMs, cont.

Computation is more challenging now...

Naive approach:25

for each ϑ on a grid in T, take iid samples Y
(m)
ϑ ∼ PY |ϑ,

m = 1, . . . ,M
then, for each θ ∈ T, use the approximation

πy (θ) ≈
∫ 1

0

max
ϑ:q(ϑ)>s

[ 1

M

M∑
m=1

1{R(Y
(m)
ϑ , ϑ) ≤ R(y , θ)}

]
ds

This is doable in applications — I’ve done it!

Surely more efficient strategies are available

25Hose, Hanss, M., BELIEF’21
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Example: Fieller–Creasy

Ratio of two normal means26 (e.g., instrumental variables)

Impossibility theorem:27 No set estimator has finite length
with probability 1 and coverage probability > 0

Two marginal IM contours

vacuous prior
“E|Θ| ≤ 5”

Partial-prior IM

PY ,Θ{πY (Θ) ≤ α} ≤ α
relaxed coverage prob
impossible → possible? −15 −10 −5 0 5 10 15
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26M., arXiv:2309.13454
27Gleser & Hwang (1987), Ann. Statist.; Dufour (1994), Econometrica
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Example: “high-dim” case

(Y | Θ = θ) ∼ N2(θ, I ), observed y = (1, 0.3)

Sparsity encouraging partial prior

Compare vacuous-prior and partial-prior IMs
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Warm-up ↘ cool-down

Recall: H = {cancer}
Practically realistic case: “P(H) ≤ 0.05” (say)

Can encode this with a partial prior contour:

q(H) = 0.05 and q(Hc) = 1

Vacuous Prior

Πneg(H) = 0.00

Πneg(H) = 0.05 =⇒ infer Hc

Πpos(H) = 0.95 =⇒ infer H

Πpos(H) = 1.00

Partial Prior

Πneg(H) = 0.00

Πneg(H) < 0.01 =⇒ infer Hc

Πpos(H) = 0.00

Πpos(H) = 0.05 =⇒ infer Hc
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Conclusion

Perhaps the most important unresolved problem in statistical

inference is the use of Bayes theorem in the absence of prior

information. —Efron

Statistical principles/foundations matter!

Fisher had the right ideas but...

Imprecision is imperative for reliable UQ

New possibilistic IM framework:

likelihood-based
relatively simple (consonance)
achieves strong validity
incorporates partial prior info
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Conclusion, cont.

Open methodological questions:

efficient Choquet integral computation?
partial prior elicitation?
high-dim problems?
valid (possibilistic) model assessment/selection?

Open theoretical questions:

IM vs generalized Bayes contraction–dilation
decision-theoretic considerations?
imprecision & asymptotics?
revisiting “impossibility theorems” & paradoxes?

Open philosophical questions:

“what makes IM output meaningful is its properties”?
frequentist–Bayesian spectrum?

Open applications: all of them!

63 / 65



References

Learned a lot since my first book

n-part series of working papers:

Valid and efficient imprecise-probabilistic

inference with partial priors

n = 3 parts so far

1 arXiv:2203.06703

2 arXiv:2211.14567

3 arXiv:2309.13454

Working towards a new book...
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The end

https://wordpress-courses2223.wolfware.ncsu.edu/

st-790-001-fall-2022/

Papers, talks, etc? www4.stat.ncsu.edu/~rmartin/

Question, etc? rgmarti3@ncsu.edu

Thanks for your attention!
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