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Valuation-based Systems

Valuation-based Systems

A valuation-based System (VBS) is an abstract framework for representing and reasoning with
knowledge.
It has two parts. A static part that is concerned with representation of knowledge, and a dynamic
part that is concerned with reasoning with knowledge.
The static part consists of:

Variables: A finite set V of variables {X, Y, Z, . . .}. Subsets of V will be denoted by r, s, t, . . ..
Valuations: A finite set Ψ of valuations {ρ, σ, τ, . . .}. Each valuation encodes knowledge about a subset
of variables. Thus, we say, ρ is a valuation for r, where r ⊆ V.

A graphical representation of a VBS is called a valuation network.
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Valuation-based Systems

Valuation-based Systems

The valuation network for the Captain’s problem: A bipartite graph with variables and valuations as
nodes. Each valuation is linked to the variables in its domain.
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Valuation-based Systems

Valuation-based Systems

The dynamic part consists of several operators:
Combination: ⊕ : Ψ × Ψ → Ψ that enables us to aggregate knowledge.
The combination operator has the following properties:

(Domain) If ρ is a valuation for r, σ is a valuation for s, and ρ and σ are distinct, then ρ ⊕ σ is a valuation
for r ∪ s
(Commutativity) ρ ⊕ σ = σ ⊕ ρ
(Associativity) ρ ⊕ (σ ⊕ τ) = (ρ ⊕ σ) ⊕ τ

In general ρ ⊕ ρ ̸= ρ. One must be careful not to double-count non-idempotent knowledge. Hence, one
should only combine distinct valuations.
The sequence in which knowledge is aggregated should make no difference.
The combination of all valuations, ⊕Ψ , is called the joint valuation.
In large models (| V | is large), the joint cannot be explicitly computed.
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Valuation-based Systems

Valuation-based Systems

Another operator is marginalization
Marginalization: −X : Ψ → Ψ that allows us to coarsen knowledge marginalizing X out of the
domain of a valuation.
Properties of Marginalization:

(Domain) If ρ is a valuation for r, and X ∈ r, then ρ−X is a valuation for r \ {X}.
(Order does not matter) If ρ is a valuation for r, X, Y ∈ r, then (ρ−X)−Y = (ρ−Y )−X = ρ−{X,Y }.
(Local computation) If ρ and σ are valuations for r and s, respectively, X ∈ r, and X /∈ s, then
(ρ ⊕ σ)−X = (ρ−X) ⊕ σ.

We will sometimes denote ρ−{X} by ρ↓r\{X}.
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Valuation-based Systems

Valuation-based Systems

Making inference means finding marginals of the joint valuation for the variables of interest
Thus, if X is a variable of interest, we compute (⊕Ψ)↓X = (⊕Ψ)−(V\{X}) by marginalizing all
variables in V \ {X} out of the joint valuation ⊕Ψ .
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Valuation-based Systems

Valuation-based Systems

VBS is an abstraction of several uncertainty calculi
propositional calculus
probability theory
belief function theory
Spohn’s epistemic belief calculus
possibility theory
. . .

VBS can also be considered as an abstraction of
Optimization
Bayesian decision theory
Solving systems of equations
Relational database theory
. . .
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Basics of Dempster-Shafer belief function theory Static and Dynamic

Basics of D-S Theory: Static and Dynamic

Static: We represent knowledge using either:
basic probability assignment (BPA) m,
belief function Bel,
plausibility function P l,
commonality function Q.

Dynamic: We make inferences using:
Dempster’s rule of combination
Marginalization rule

Inference: Given a set of belief functions (BPA, plausibility, belief, or commonality) representing
knowledge of the domain and all evidence, we would like to find the marginals of the joint for some
variables of interest.
The joint belief function is obtained by combining all belief functions using Dempster’s rule of
combination.
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Basics of Dempster-Shafer belief function theory Static and Dynamic

Basics of D-S Theory: Static and Dynamic

Suppose V denotes a finite set of variables
For each X ∈ V, ΩX denotes a finite set of states of X

For every non-empty subset s ⊆ V,
Ωs = ×X∈sΩX

denotes the states of s

Let 2Ωs denote the set of all subsets of Ωs

A basic probability assignment (BPA) m for s is a function m : 2Ωs → [0, 1] such that:

m(∅) = 0, (1)∑
a∈2Ωs

m(a) = 1 (2)

Subsets a ∈ 2Ωs such that m(a) > 0 are called focal elements of m.
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Basics of Dempster-Shafer belief function theory Static and Dynamic

Basics of D-S Theory: Static and Dynamic

The combination rule in D-S theory of belief functions is Dempster’s rule, which Dempster called the
“product-intersection” rule.
The product of the BPA masses is assigned to the intersection of the focal elements, any mass
assigned to the empty set is discarded, and the remaining masses are re-normalized.
In general m ⊕ m ̸= m.
Thus, in combining, e.g., m1 and m2 by Dempster’s rule, it is important that m1 and m2 are distinct
pieces of evidence, and there is no double-counting of uncertain knowledge.
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Basics of Dempster-Shafer belief function theory Static and Dynamic

Basics of D-S Theory: Static and Dynamic

Dempster’s rule satisfies all properties of the combination operator.

(Domain) If m1 is a BPA for s1 and m2 is a BPA for s2, then m1 ⊕ m2 is a BPA for s1 ∪ s2

(Commutativity) m1 ⊕ m2 = m2 ⊕ m1

(Associativity) m1 ⊕ (m2 ⊕ m3) = (m1 ⊕ m2) ⊕ m3
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Basics of Dempster-Shafer belief function theory Static and Dynamic

Basics of D-S Theory: Static and Dynamic

Marginalization in belief function theory is addition.
Projection of states: If a ∈ Ωs, and X ∈ s, then a↓s\{X} (or a−X) is the state of s \ {X} obtained
from a by dropping the state of X. For example, (x, y)↓X = x.
Projection of subset of states: If a ⊆ Ωs, then a−X (or a↓s\{X}) is

a−X = {b−X : b ∈ a}

If m is a BPA for s, and X ∈ s, then m−X is a BPA for s \ {X} defined as follows:

m−X(a) =
∑

b∈2Ωs : b−X =a

m(b)

for all a ∈ 2s\{X}.
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Basics of Dempster-Shafer belief function theory Static and Dynamic

Basics of D-S Theory: Static and Dynamic

An Example of Marginalization:

Suppose M and R are variables with ΩM = {tM , fM } and ΩR = {tR, fR},
Suppose m is a BPA for {M, R} such that

m({(tM , tR), (fM , tR), (fM , fR)}) = 0.1,

m({(tM , fR), (fM , tR), (fM , fR)}) = 0.7,

m(Ω{M,R}) = 0.2.

Then m−M is a BPA for {R} such that:

ρ−M ({tR, fR}) = 1.

And m−R is a BPA for {M} such that:

m−R({tM , fM }) = 1.

Thus, m by itself tells us nothing about M or R.

P. P. Shenoy (KU) Graphical Models for Belief Functions October 28–November 1, 2023 16 / 77



Basics of Dempster-Shafer belief function theory Static and Dynamic

Basics of D-S Theory: Static and Dynamic

The definition of marginalization of BPAs satisfies the properties of marginalization:
(Domain) If m is a BPA for r, and X ∈ r, then m−X is a BPA for r \ {X}.
(Order does not matter) If m is a BPA for r, X, Y ∈ r, then
(ρ−X)−Y = (ρ−Y )−X = ρ−{X,Y } = ρ↓r\{X,Y }.
(Local computation) If mr and ms are BPAs for r and s, respectively, X ∈ r, and X /∈ s, then
(mr ⊕ ms)−X = (m−X

r ) ⊕ ms.
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Basics of Dempster-Shafer belief function theory Conditional independence

Basics of D-S Theory: Conditional Independence

In probability theory, conditional independence is defined as follows:

Definition (CI in probability theory (Dawid 1979))
Suppose P is a joint probability distribution for V, and suppose r, s, and t are disjoint subsets of V. We
say r and s are conditionally independent given t with respect to P , written as r⊥⊥P s | t, iff

P ↓r∪s∪t = Pr∪t ⊗ Ps∪t, (3)

where Pr∪t is a probability potential for r ∪ t, Ps∪t is a probability potential for s ∪ t, Ps∪t and Ps∪t are
distinct, and ⊗ is the probabilistic combination operator (pointwise multiplication followed by
normalization).
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Basics of Dempster-Shafer belief function theory Conditional independence

Basics of D-S Theory: Conditional Independence

The definition of CI in the D-S theory is similar:

Definition (CI in D-S theory (Shenoy 1994))
Suppose m is a BPA for V, and suppose r, s, and t are disjoint subsets of V. We say r and s are
conditionally independent given t with respect to m, written as r⊥⊥ms | t, iff

m↓r∪s∪t = mr∪t ⊕ ms∪t, (4)

where mr∪t is a BPA for r ∪ t, ms∪t is a BPA for s ∪ t, and mr∪t and ms∪t are distinct.

There are several definitions of conditional independence in the D-S theory.
The definition above is key to defining graphical models in the D-S theory.
Like in probability theory, the definition above satisfies the graphoid properties of conditional
independence (Pearl and Paz 1987).
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Basics of Dempster-Shafer belief function theory Conditional BPAs

Basics of D-S Theory: Conditional BPAs

Conditional BPAs

In probability theory, we construct Bayesian network models by using conditional probability tables
(CPTs) for each variable in the network.
What is an analog of CPT in the belief function theory?

Definition (Conditional BPA (Jiroušek et al 2023))
Suppose r and s are disjoint subsets of variables and r′ ⊆ r. BPA mr′|s for r′ ∪ s is a conditional BPA for
r′ given s if and only if

1 (mr′|s)↓s is a vacuous BPA for s, and
2 If mr is a BPA for r, and mr and mr′|s are distinct, then mr ⊕ mr′|s is a BPA for r ∪ s.

r′ is called the head of the conditional mr′|s, and s its tail.
In the second condition, mr and mr′|s are distinct iff s⊥⊥mr⊕mr′|s

(r \ r′) | r′ [Jiroušek et al. 2023].
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Basics of Dempster-Shafer belief function theory Conditional BPAs

Basics of D-S Theory: Conditional BPAs
Where do conditionals come from?

One source of conditionals is Smets’ conditional embedding.
Suppose that when X = x, there is a BPA for Y , denoted by mYx

, that represents our conditional
knowledge of Y in the context X = x.
The knowledge of Y encoded in mYx

is valid only in the case X = x, but mYx
is not a conditional

BPA.
Using Smets’ conditional embedding, we convert the conditional BPA mYx

for Y to an conditional
BPA mY |x for (X, Y ) as follows: Each focal element b of mYx

is converted to a corresponding focal
element ({x} × b) ∪ ((ΩX \ {x}) × ΩY ) of mY |x with the same mass, i.e.,

mY |x(({x} × b) ∪ ((ΩX \ {x}) × ΩY )) = mYx
(b).

Conditional BPA mY |x for (X, Y ) has the following properties:
1 mY |x is a conditional for Y given x, i.e., (mY |x)↓X is a vacuous BPA for X.
2 Suppose mX=x is a deterministic BPA for X as follows: mX=x({x}) = 1. Then,

(mY |x ⊕ mX=x)↓Y = mYx .
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Basics of Dempster-Shafer belief function theory Conditional BPAs

Basics of D-S Theory: Conditional BPAs

An Example

Suppose X and Y are variables with ΩX = {x, x̄} and ΩY = {y, ȳ}.
Suppose mYx

is a BPA for Y as follows:

mYx({y}) = 0.8,

mYx(ΩY ) = 0.2.

mYx
is conditional knowledge of Y in the context X = x, but it is not a conditional BPA.

Conditional BPA mY |x for {X, Y } is as follows:

mY |x({(x, y), (x̄, y), (x̄, ȳ)}) = 0.8,

mY |x(ΩX,Y ) = 0.2.
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Basics of Dempster-Shafer belief function theory Conditional BPAs

Basics of D-S Theory: Conditional BPAs

Consider mY |x:

mY |x({(x, y), (x̄, y), (x̄, ȳ)}) = 0.8,

mY |x(ΩX,Y ) = 0.2.

It is clear that (mY |x)↓X is vacuous for X.
Consider mY |x ⊕ mX=x:

{(x, y), (x̄, y), (x̄, ȳ)} Ω{X,Y }

mY |x ⊕ mX=x 0.8 0.2
{(x, y), (x, ȳ)} {(x, y)} {(x, y), (x, ȳ)}

1 0.8 0.2

Thus, (mY |x ⊕ mX=x)({(x, y)}) = 0.8, (mY |x ⊕ mX=x)({(x, y), (x, ȳ)}) = 0.2, and
(mY |x ⊕ mX=x)↓Y = mYx

.
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Basics of D-S Theory: BF Directed Graphical Models

Notation:

A directed graph G is a pair G = (V, E), where V = {X1, . . . , Xn} denotes the set of nodes and E
denotes the set of directed edges (Xi, Xj) between two distinct variables in V.
For any node X ∈ V, let PaG(X) denote the parents of X in G, i..e,

PaG(X) = {Y ∈ V : (Y, X) ∈ E}.

A directed graph is said to be acyclic if and only if there exists a sequence of the nodes of the graph,
say (X1, . . . , Xn) such that if there is a directed edge (Xi, Xj) ∈ E then Xi must precede Xj in the
sequence.
The sequence (X1, . . . , Xn) is called a topological sequence as it depends only on the structure of
the directed graph. It may not be unique.
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Basics of Dempster-Shafer belief function theory BF Directed Graphical Models

Basics of D-S Theory: BF Directed Graphical Models

Definition (BFDGM)
Suppose we have a directed acyclic graph G = (V, E) with n nodes in V. A belief-function directed
graphical model (BFDGM) is a pair (G, {m1, . . . , mn}) such that BPA mi associated with node Xi is a
conditional BPA for Xi given PaG(Xi), for i = 1, . . . , n. A fundamental assumption of a BFDGM is that
m1, . . . , mn are distinct, and the joint BPA m for V associated with the model is given by

m =
n⊕

i=1
mi. (5)

The assumption in Def. (BFDGM) that all conditionals are distinct allows the combination in Eq.
(5).
Given m, the joint BPA for V as defined in Eq. (5) follows from the Definition the following CI
relations hold. Suppose (X1, . . . , Xn) is a topological sequence associated with BFDGM
(G, {m1, . . . , mn}). Then for each Xi, i = 2, . . . , n,

Xi⊥⊥m({X1, . . . Xi−1} \ PaG(Xi)) | PaG(Xi).
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Basics of Dempster-Shafer belief function theory BF Directed Graphical Models

Basics of D-S Theory: BF Directed Graphical Models

A topological sequence is: (W, L, M, F, D, R, S, A).
Some CI assumptions: Let m denote the joint BPA associated with the model.

A⊥⊥m{W, L, M, F, R} | {D, S}
S⊥⊥m{L, M, F, D} | {W, R}, etc.

P. P. Shenoy (KU) Graphical Models for Belief Functions October 28–November 1, 2023 26 / 77



Basics of Dempster-Shafer belief function theory BF Undirected Graphical Models

Basics of D-S Theory: Undirected Graphical Models

Notation:

An undirected graph G is a pair G = (V, E), where V = {X1, . . . , Xn} denotes the set of nodes, and
E denotes the set of undirected edges {Xi, Xj} between two distinct nodes in V.
Consider node Xi ∈ V. The Markov boundary of Xi in G, denoted by MaG(Xi), is as follows:

MaG(Xi) = {Xj ∈ V : {Xi, Xj} ∈ E}.

In other words, the Markov boundary of Xi is the set of nodes in V that are directly connected to Xi

by an edge.
A clique in G is a maximal completely connected subset of nodes in V.
We assume there are k cliques r1, . . . , rk in G, where r ≤ |E|.

P. P. Shenoy (KU) Graphical Models for Belief Functions October 28–November 1, 2023 27 / 77



Basics of Dempster-Shafer belief function theory BF Undirected Graphical Models

Basics of D-S Theory: BF Undirected Graphical Models

Two examples:

For the UG model on the left:

There are four nodes, four edges, and four cliques: the nodes in each edge is a clique.
MaG(X1) = {X2, X4}, MaG(X2) = {X1, X3}, etc.

For the UG model on the right:

There are four nodes, five edges, and two cliques: {X1, X2, X3}, and {X1, X3, X4}.
MaG(X1) = {X2, X3, X4}, MaG(X2) = {X1, X3}, etc.
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Basics of Dempster-Shafer belief function theory BF Undirected Graphical Models

Basics of D-S Theory: BF Undirected Graphical Models

Definition (BFUGM)
Suppose we have an undirected graph G = (V, E) with r cliques r1, . . . , rk. A belief-function undirected
graphical model (BFUGM) is a pair (G, {m1, . . . , mk}) such that BPA mi associated with clique ri is a
BPA for ri. A fundamental assumption of a BFUGM is that m1, . . . , mk are distinct, and the joint BPA
m for V associated with the model is given by

m =
k⊕

i=1
mi (6)

The assumption in Def. (BFUGM) that all BPAs are distinct allows the combination in Eq. (6).
Given m, the joint BPA for V in Eq. (6), it follows from the definition that the following CI relations
hold: For each Xi ∈ V,

Xi⊥⊥mV \ (MaG(Xi) ∪ {Xi}) | MaG(Xi)
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Basics of D-S Theory: BF Undirected Graphical Model

Two examples:

For the UG model on the left: Let m denote m12 ⊕ m23 ⊕ m34 ⊕ m14. There are two CI assumptions:

X1⊥⊥mX3 | {X2, X4}. This follows from m = (m12 ⊕ m14) ⊕ (m23 ⊕ m34).
X2⊥⊥mX4 | {X1, X3}. This follows from m = (m12 ⊕ m23) ⊕ (m14 ⊕ m34).

For the UG model on the right: Let m denote m123 ⊕ m134. There is one CI assumption:

X2⊥⊥mX4 | {X1, X3}. This follows from m = m123 ⊕ m134.
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Basics of D-S Theory: BF Undirected Graphical Models

An example of a BFUGM:

We have a grid of 5 + 6 + 7 + 6 + 5 = 29 communication nodes. There are 44 undirected edges in
the graph. The reliability of each link is 90%.
Nodes A and B are connected to the grid with links of reliability 80%.
What is the reliability of the connection between A and B?
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Local Computation

Local Computation: Captain’s Problem

Captain’s Problem (R. Almond, Graphical Belief Modeling, Chapman and Hall, 1995)
A ship’s captain is concerned about how many days his ship may be delayed before arrival at a
destination.
The arrival delay may be a result of a delay in departure and delay in sailing.
Delay in departure may be a result of maintenance (at most one day), delay in loading (at most one
day), or due to forecast of bad weather (at most one day).
Delay in sailing may result from bad weather (at most one day) and whether repairs may be needed at
sea (at most one day).
If maintenance is done before sailing, the chance of repairs at sea is less likely.
Weather forecast says small chance of bad weather (.2), good chance of good weather (0.6). The
forecast is 80% reliable.
Captain has some knowledge of loading delay and whether maintenance is done before departure.
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Local Computation

Local Computation: Captain’s Problem

Variables
A (arrival delay), ΩA = {0, 1, 2, 3, 4, 5}.
D (departure delay), ΩD = {0, 1, 2, 3}.
S (sailing delay), ΩS = {0, 1, 2}.
L (is loading delayed?), ΩL = {t, f}.
F (weather forecast), ΩF = {b, g}.
W (actual weather), ΩW = {b, g}.
M (is maintenance done before sailing?), ΩM = {t, f}.
R (is a repair at sea needed?), ΩR = {t, f}.
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Local Computation

Local Computation: Captain’s Problem
The Captain problem can be described by a causal directed acyclic graph (DAG) as follows:
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Local Computation

Local Computation: Captain’s Problem

Valuation Network: A bipartite graph with variables and valuations as nodes. Each valuation is linked
to the variables in its domain.
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Local Computation

Local Computation: Captain’s Problem

Consider the piece of knowledge: Arrival delay is the sum of departure delay and sailing delay
We model this piece of knowledge by a BPA α for {A, D, S} such that

α({(0, 0, 0), (1, 1, 0), (2, 2, 0), (3, 3, 0),
(1, 0, 1), (2, 1, 1), (3, 2, 1), (4, 3, 1),

(2, 0, 2), (3, 1, 2), (4, 2, 2), (5, 3, 2)}) = 1.

α has one focal set. Such BPAs are called deterministic.
α can be considered as a conditional for A given {D, S} because α↓{D,S} is a vacuous BPA for
{D, S}.
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Local Computation

Local Computation: Captain’s Problem

Loading delay, bad weather forecast, and maintenance each add one day to departure delay
We model this piece of knowledge by a deterministic BPA δ for {D, L, F, M} such that

δ({(0, f, g, f), (1, t, g, f), (1, f, b, f), (1, f, g, t),
(2, f, b, t), (2, t, g, t), (2, t, g, f), (3, t, b, t)}) = 1.

δ can be considered as a conditional BPA for D given {L, F, M} because δ↓{L,F,M} is a vacuous
BPA for {L, F, M}.
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Local Computation

Local Computation: Captain’s Problem

At least 90% of the time, bad weather and repair at sea each add one day to the sailing delay
We model this by BPA σ for {S, W, R} such that

σ({(0, g, f), (1, b, f), (1, g, t), (2, b, t)}) = 0.9,

σ(Ω{S,A,R}) = 0.1

σ can be considered as a conditional for S given {W, R} because σ↓{W,R} is a vacuous BPA for
{W, R}.
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Local Computation

Local Computation: Captain’s Problem

Forecast is 80% reliable
This piece of knowledge is represented by BPA ϕ1 for {F, W} such that

ϕ1({(b, b), (g, g)}) = 0.8,

ϕ1(Ω{F,W }) = 0.2.

ϕ1 can be regarded as a conditional for F given W because ϕ↓W
1 is a vacuous BPA for W .

Forecast predicts bad weather with a chance of 0.2 and good weather with a chance of 0.6.
This piece of knowledge is represented by BPA ϕ2 for {F} such that

ϕ2({b}) = 0.2,

ϕ2({g}) = 0.6,

ϕ2(Ω{F }) = 0.2.

ϕ2 is not a conditional BPA. It represents evidence for F .
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Local Computation

Local Computation: Captain’s Problem

Loading is delayed with chance 0.3 and on schedule with chance 0.5.
This piece is model by BPA λ for {L} such that

λ({t}) = 0.3,

λ({f}) = 0.5,

λ(Ω{L}) = 0.2.

No maintenance was done on the ship before departure
This piece of knowledge is represented by BPA µ for {M} such that

µ({f}) = 1.

λ and µ are pieces of evidence for L and M , respectively.
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Local Computation

Local Computation: Captain’s Problem

If maintenance was done before sailing, then the chance of repair at sea is between 10 and 30%.
This is conditional knowledge denoted by BPA ρRM=t

for R as follows:

ρRM=t
({t}) = 0.1,

ρRM=t
({f}) = 0.7,

ρRM=t
({t, f}) = 0.2.

After conditional embedding, ρ1 is a conditional BPA for R given M as follows:

ρ1({(t, t), (f, t), (f, f)}) = 0.1,

ρ1({(t, f), (f, t), (f, f)}) = 0.7,

ρ1(Ω{M,R}) = 0.2.

Notice that ρ↓M
1 is a vacuous BPA for M .
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Local Computation

Local Computation: Captain’s Problem

If maintenance was not done before sailing, then the chance of repair at sea is between 20 and 80%.
This is conditional knowledge denoted by BPA ρRM=f

for R as follows:

ρRM=f
({t}) = 0.2,

ρRM=f
({f}) = 0.2,

ρRM=f
({t, f}) = 0.6.

After conditional embedding, ρ2 is a conditional BPA for R given M as follows:

ρ2({(f, t), (t, t), (t, f)}) = 0.2,

ρ2({(f, f), (t, t), (t, f)}) = 0.2,

ρ2(Ω{M,R}) = 0.6.

Notice that ρ↓M
2 is a vacuous BPA for M .
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Local Computation

Local Computation

Making inference means finding marginals of the joint valuation ⊕Ψ for the variables of interest.
If there are many variables in V, computing the joint valuation ⊕Ψ for V is intractable.
However, one can compute the marginal of the joint for X, (⊕Ψ)↓X , without computing the joint
explicitly, using so-called local computation.
The axiom that allows local computation is the local computation axiom:
If ρ and σ are BPAs for r and s, respectively, X ∈ r, and X /∈ s, then (ρ ⊕ σ)−X = (ρ−X) ⊕ σ.
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Local Computation

Local Computation

Consider the Captain’s problem. We want to compute the marginal of the joint for A. So, we have
to marginalize all other variables from the joint.

Consider L. It is only in the domain of δ and λ. The local computation axiom guarantees that if we
replace δ and λ by (δ ⊕ λ)−L, then the product of all valuations will give us (⊕Ψ)−L.
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Local Computation

Local Computation

The reduced VN is as follows:

We can recursively remove all but A from the VN.
Consider W . It is in the domain of ϕ for {F, W} and σ for {S, W, R}. Thus, (ϕ ⊕ σ)−W will be a
BPA for {F, S, R}.
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Local Computation

Local Computation

After deletion of {L, W}:
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Local Computation

Local Computation

After deletion of {L, W, R}:
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Local Computation

Local Computation

After deletion of {L, W, R, M}:
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Local Computation

Local Computation

After deletion of {L, W, R, M, F}:
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Local Computation

Local Computation

After deletion of {L, W, R, M, F, S, D} in this order:

If we combine all valuations, we have the marginal of the joint for A.
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Local Computation

Local Computation

In finding the marginal for A, we used deletion sequence L W R M F S D.
The order does not matter axiom allows us to use any deletion sequence (and obtain the same
marginal).
Some deletion sequences involve less computation than others.
Finding an optimal deletion sequence is a hard problem.
So we use heuristics to select a sequence such as one-step-look-ahead: The variable to be
marginalized next is the one that leads to a combination on the smallest domain.
A local computation algorithm for finding marginals is implemented in Belief Function Machine.
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Local Computation

Local Computation as Message Passing

If we can find the marginal for A, we can find the marginal for any other variable similarly.
However, there may be duplication of computations.
We can avoid duplication by saving intermediate computations in a data structure called a “join tree.”
A join tree is a tree with subsets of variables as nodes with the property that if a variable appears in
two different nodes, it appears in all nodes in the path between them.
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Local Computation

Local Computation as Message Passing

Consider deletion of L. We can describe the computation as messages between nodes as follows:
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Local Computation

Local Computation as Message Passing

Similarly, deletion of W can be described as follows:
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Local Computation

Local Computation as Message Passing

Similarly, deletion of R can be described as follows:
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Local Computation

Local Computation as Message Passing

The tree thus constructed is a join tree.
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Local Computation

Local Computation as Message Passing

To find the marginal for a variable, say A, orient all edges toward A, which is now the tree’s root.
Each node sends a message to its inward neighbor, which is the combination of all messages it
receives from its outward neighbors plus what it has suitably marginalized.
Timing: Leaves (nodes with no outward neighbors) can send messages immediately. Non-leaves have
to wait till they receive a message from all their outward neighbors.
Process is finished when the root has received a message from its outward neighbors. The root then
combines all the messages it receives plus what it has.
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Local Computation

Local Computation as Message Passing
At the beginning:
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Local Computation

Local Computation as Message Passing
Time step 1:
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Local Computation

Local Computation as Message Passing
Time step 2:
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Local Computation

Local Computation as Message Passing
Time step 3:
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Local Computation

Local Computation

Computing a marginal can be described as the propagation of messages in a join tree:
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Local Computation

Local Computation as Message Passing

Suppose we now wish to find the marginal for L.
We re-orient some edges so L is the root and compute new messages for the re-oriented edges.
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Local Computation

Local Computation as Message Passing

End of propagation for L:
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Applications

Applications: Belief Function Machine

A software to build belief function models and compute marginals using local computation
Implemented in MATLAB
Written in 2002 by Phan Giang under the supervision of Philippe Smets, Thierry Denoeux, and I.
Further developed by Sushila Shenoy in 2003.
Features:

Belief function model is input as a text file using a language called UIL (unified input language)
Can solve “large” models/
Solve means finding the marginal of the joint for variables of interest.
Can reduce the marginal belief function to probabilities.
Can do sensitivity analysis.

Can be downloaded for free from https://pshenoy.ku.edu/Papers/BFM072503.zip
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Applications Captain’s Problem

Applications: Captain’s Problem

Suppose we wish to solve the Captain’s Problem
Input the problem as a UIL file “captain.txt”

Define variables and their state spaces
Define valuations and their domains
Describe the details of each valuation as a BPA or as a BPA representing conditional knowledge
Conditional knowledge BPAs are converted to conditional BPAs using Smets’ conditional embedding
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Applications Captain’s Problem

Applications: Captain’s Problem

A snippet of UIL file Captain.txt for Captain’s Problem:
DEFINE VARIABLE A { 0 1 2 3 4 5 6 };
DEFINE VARIABLE D { 0 1 2 3 };
DEFINE VARIABLE S { 0 1 2 3 };
DEFINE VARIABLE L { t f };
etc.
# The arrival delay is the sum of departure and sailing delays
DEFINE RELATION ADS { A D S };
SET VALUATION ADS { ( 3 3 0 ) ( 5 2 3 ) ( 5 3 2 ) ( 3 2 1 ) ( 1 1 0 ) ( 3 1 2 ) ( 3 0 3 ) ( 1 0 1 )
( 4 2 2 ) ( 2 2 0 ) ( 6 3 3 ) ( 4 3 1 ) ( 2 1 1 ) ( 4 1 3 ) ( 2 0 2 ) ( 0 0 0 ) } 1.0;
# Heavy weather and repair at sea add one day to the sailing delay. # This proposition is true about
90% of the time DEFINE RELATION SWR { S W R };
SET VALUATION SWR { ( 2 t t ) ( 1 f t ) ( 1 t f ) ( 0 f f ) } 0.9;
# Given the ship has undergone maintenance, the chance it needs a repair # at sea is between 10% to
30%
DEFINE CONDITIONAL RELATION RM1 { R } GIVEN { M };
SET CONDITIONAL VALUATION RM1 GIVEN {t } { ( t ) } 0.1, { ( f ) } 0.7;
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Applications Captain’s Problem

Applications: Captain’s Problem

Solution of Captain’s problem using BFM in Matlab.
————–
Script:
————–
uil2bm(’Captain.txt’,’bmcaptain’);
global BELIEF VARIABLE ATTRIBUTE STRUCTURE FRAME QUERY BELTRACE NODE BJTREE
TRANPROTOCOL;
belall = condiembed([BELIEF(:).number]);
keepbel = belall;
showbel(solve(belall,’A’));
showbel(bel2prob(38));
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Applications Captain’s Problem

Belief Function Machine: Captain’s Problem
————–
MatLab output
————–
Belief # 38 in plausibilistic probability
———–
A | value
———–
2 | 0.23852
———–
1 | 0.2356
———–
3 | 0.23366
———–
0 | 0.15473
———–
4 | 0.1240
———–
5 | 0.0134
———–

P. P. Shenoy (KU) Graphical Models for Belief Functions October 28–November 1, 2023 71 / 77



Applications Chest Clinic

Applications: Chest Clinic

BFM can solve complete Bayes net (BN) models using belief functions.
Consider Chest Clinic example from [Lauritzen-Spiegelhalter 1988].
BFM gives the same answers as Bayes net software.
If we are missing some priors/conditionals, using Bayes net software is not an option. We can use
BFM to solve such incomplete BNs.

P. P. Shenoy (KU) Graphical Models for Belief Functions October 28–November 1, 2023 72 / 77



Applications Communication Network

Applications: Communication Network

Communication network [Haenni-Lehmann 2002]
We have a grid of 29 = 5 + 6 + 7 + 6 + 5 communication nodes arranged in 5 rows
There are 44 links, and each link has 90% reliability
Nodes A and B are connected to the grid with links having 80% reliability
What is the reliability of the connection between A and B? (Ans: ≈ 64%)
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Applications Communication Network

Applications: Communication Network

Solution of Communication network using BFM in Matlab.
————–
Script:
————–
uil2bm(’comm5.txt’, ’bmcomm5’);
global BELIEF VARIABLE ATTRIBUTE STRUCTURE FRAME QUERY BELTRACE NODE BJTREE
TRANPROTOCOL;
showbel(solve([1:46], [1,2]));
————–
Output in MatLab:
————–
A B | value
————–
t t | 0.63802
f f |
————–
****| 0.36198
————–

P. P. Shenoy (KU) Graphical Models for Belief Functions October 28–November 1, 2023 74 / 77



References

Outline
1 Valuation-based Systems

2 Basics of Dempster-Shafer belief function theory
Static and Dynamic
Conditional independence
Conditional BPAs
BF Directed Graphical Models
BF Undirected Graphical Models

3 Local Computation

4 Applications
Captain’s Problem
Chest Clinic
Communication Network

5 References

P. P. Shenoy (KU) Graphical Models for Belief Functions October 28–November 1, 2023 75 / 77



References

References
VBS: Shenoy, PP, “A Valuation-Based Language for Expert Systems,” Int. J. of Approx. Reas., 3(2),
1989, 383–411.
Conditional Independence: Shenoy, PP, “Conditional independence in valuation-based systems,” Int.
J. of Approx. Reas., 10(3), 1994, 203–234.
Conditional Belief Functions: Jiroušek, R, V Kratochvíl & PP Shenoy, “On conditional belief
functions in directed graphical models in the Dempster-Shafer theory,” Int. J. of Approx. Reas.,
160(9), 2023.
Local Computation: Shenoy, PP & G Shafer, “Axioms for Probability and Belief-Function
Propagation,” in Shachter, RD, T Levitt, JF Lemmer and LN Kanal (eds.), Uncert. in Art. Int., 4,
1990, 169–198.
Captain’s Problem: Almond, R, Graphical Belief Modeling, 1995, Chapman & Hall
Chest Clinic: SL Lauritzen and DJ Spiegelhalter, “Local computations with probabilities on graphical
structures and their application to experts systems” JRSS, ser. B, 50(2), 1988, 157–224.
Incomplete BNs: PP Shenoy, “Making inferences in incomplete Bayesian networks: A
Dempster-Shafer belief function approach,” Int. J. of Approx. Reas., 160(9), 2023.
Communication network: R Haenni and N Lehmann, “Resource bounded and anytime approximation
of belief function computations,” Int. J. of Approx. Reas., 31(1–2), 2002, 103–154.

P. P. Shenoy (KU) Graphical Models for Belief Functions October 28–November 1, 2023 76 / 77



References

Questions

Questions?

P. P. Shenoy (KU) Graphical Models for Belief Functions October 28–November 1, 2023 77 / 77


	Valuation-based Systems
	Basics of Dempster-Shafer belief function theory
	Static and Dynamic
	Conditional independence
	Conditional BPAs
	BF Directed Graphical Models
	BF Undirected Graphical Models

	Local Computation
	Applications
	Captain's Problem
	Chest Clinic
	Communication Network

	References

