Application of possibility theory to optimization and decision making

Masahiro Inuiguchi Osaka University, JAPAN

BFTA 2023, Ishikawa

Contents

- Introduction to Fuzzy Sets
- Introduction to Possibility Theory
- Possibility and necessity measures
- Correspondence to Plausibility and Belief functions
- Application to Decision Making: Decision principles
- Possibility measure maximization
- Necessity measure maximization
- Relative possibility measure maximization
- Possibilistic (Fuzzy) Linear Programming
- (Much simpler than stochastic linear programming)

Introduction to Fuzzy Sets (1)

- Crisp Sets: The conventional set
(Crisp) Set A :
$x \in A$: " x belongs to A " or " x is a member of A "
$x \notin A$: " x does not belong to A " or " x is not a member of A "
Sets with unsharp boundary \Rightarrow Fuzzy Sets (Fuzzy Subsets)
For extending crisp sets to Fuzzy Sets,
- Characteristic Function

The characteristic function of set A written as χ_{A} :

$$
\chi_{A}(x)=\left\{\begin{array}{lll}
1 & \text { if } & x \in A \\
0 & \text { if } & x \notin A
\end{array}\right.
$$

(Example 1)

$$
A=\{x \mid 1 \leqq x \leqq 2, x \in \mathbf{R}\}
$$

Introduction to Fuzzy Sets (2)

- Fuzzy Sets: Fuzzy Sets \tilde{A} :
- A set characterized by a membership function $\mu_{\tilde{A}}: \Omega \Rightarrow[0,1]$ (Ω : Universal set, A set of all objects)
- For each $x \in \Omega, \mu_{\tilde{A}}(x) \in[0,1]$ is assigned
- The closer to $\left|\begin{array}{l}1 \\ 0\end{array}\right| \mu_{\tilde{A}}(x) \in[0,1]$ is, the $\left|\begin{array}{c}\text { higher } \\ \text { lower }\end{array}\right|$ the degree of membership of x to \tilde{A}.

Professor Lotfi Aliasker Zadeh (1921-2017)

- Born on February $4^{\text {th }}$ in 1921, in Baku, Republic of Azerbaijan.
- Move to Tehran, Iran in 1931
- Bachelor in Electric Engineering from Teheran Univ. in 1946
- Master in Electric Engineering from MIT in 1946
- PhD in Electric Engineering from Columbia Univ. in 1950
- Associate Professor, Columbia Univ. in 1950 and then Professor in 1959
- Professor, UCB in 1963
- "Linear System Theory: The State Space Approach" with Prof. Desoer
- "Fuzzy Sets" in Information and Control in 1965
- Honda Prize, IEEE Richard W. Hamming Medal, IEEE Medal of Honor, The Golden Goose Award
- Passed away on September 6, 2017 in Berkley, CA, USA

Introduction to Fuzzy Sets (2)

- Fuzzy Sets: Fuzzy Sets \tilde{A} :
- A set characterized by a membership function $\mu_{\tilde{A}}: \Omega \Rightarrow[0,1]$ (Ω : Universal set, A set of all objects)
- For each $x \in \Omega, \mu_{\tilde{A}}(x) \in[0,1]$ is assigned
- The closer to $\left|\begin{array}{l}1 \\ 0\end{array}\right| \mu_{\tilde{A}}(x) \in[0,1]$ is, the $\left|\begin{array}{c|c}\text { higher } \\ \text { lower }\end{array}\right|$ the degree of membership of x to \tilde{A}.
(Example 2)
Let \tilde{A} be a fuzzy set of real numbers 'much larger than 0 '.

$$
\mu_{\tilde{A}}(x)=\left\{\left.\begin{array}{cc}
0, & x \leqq 0 \\
\frac{1}{1+\frac{100}{x^{2}}}, & x>0
\end{array} \right\rvert\,\right.
$$

Set Operations of Fuzzy Sets (1)

- To make fuzzy sets useful in applications, we need to define calculations of fuzzy sets.

Inclusion relation

$\tilde{A} \subseteq \tilde{B} \Leftrightarrow \mu_{\tilde{A}}(x) \leqq \mu_{\tilde{B}}(x), \forall x \in \Omega$

Set Operations (2)

Inclusion relation

$$
\tilde{A} \subseteq \tilde{B} \Leftrightarrow \mu_{\tilde{A}}(x) \leqq \mu_{\tilde{B}}(x), \quad \forall x \in \Omega
$$

Intersection $\tilde{A} \cap \tilde{B}$

The maximal set included in both \tilde{A} and \tilde{B} :

$$
\tilde{A} \cap \tilde{B}: \mu_{\tilde{A} \cap \tilde{B}}(x)=\min \left[\mu_{\tilde{A}}(x), \mu_{\tilde{B}}(x)\right]
$$

Union $\tilde{A} \cup \tilde{B}$
The minimal set including both \tilde{A} and \tilde{B} :

$$
\tilde{A} \cup \tilde{B}: \mu_{\tilde{A} \cap \tilde{B}}(x)=\max \left[\mu_{\tilde{A}}(x), \mu_{\tilde{B}}(x)\right] \quad \mu_{\tilde{A}^{C}}=1-\mu_{\tilde{A}}
$$

Complement \tilde{A}^{C}
Independently, we define: $\tilde{A}=\left(\tilde{A}^{C}\right)^{C}$ (involution)

$$
\tilde{A}^{C}: \mu_{\tilde{A}^{C}}(x)=1-\mu_{\tilde{A}}(x)
$$

Properties (1)

(0) $\emptyset \subseteq \tilde{A} \subseteq \Omega$
(1) $\tilde{A} \subseteq \tilde{A}$ (reflexivity)
(2) $\tilde{A} \subseteq \tilde{B}$ and $\tilde{B} \subseteq \tilde{A}$ imply $\tilde{A}=\tilde{B}$ (antisymmetry)
(3) $\tilde{A} \subseteq \tilde{B}$ and $\tilde{B} \subseteq \tilde{C}$ imply $\tilde{A} \subseteq \tilde{C}$ (transitivity)
(4) $\tilde{A} \cup \tilde{A}=\tilde{A}$ and $\tilde{A} \cap \tilde{A}=\tilde{A}$ (idempotence)
(5) $\tilde{A} \cup \tilde{B}=\tilde{B} \cup \tilde{A}$ and $\tilde{A} \cap \tilde{B}=\tilde{B} \cap \tilde{A}$ (commutativity)
(6) $(\tilde{A} \cup \tilde{B}) \cup \tilde{C}=\tilde{A} \cup(\tilde{B} \cup \tilde{C})$ and $(\tilde{A} \cap \tilde{B}) \cap \tilde{C}=\tilde{A} \cap(\tilde{B} \cap \tilde{C})$ (associativity)
(7) $\tilde{A} \cup(\tilde{A} \cap \tilde{B})=\tilde{A}$ and $\tilde{A} \cap(\tilde{A} \cup \tilde{B})=\tilde{A}$ (absorption)
(8) $\tilde{A} \cup(\tilde{B} \cap \tilde{C})=(\tilde{A} \cup \tilde{B}) \cap(\tilde{A} \cup \tilde{C})$ and $\tilde{A} \cap(\tilde{B} \cup \tilde{C})=(\tilde{A} \cap \tilde{B}) \cup(\tilde{A} \cap \tilde{C})$ (distributivity)
(9) $\left(\tilde{A}^{C}\right)^{C}=\tilde{A}$ (involution)
(10) $(\tilde{A} \cup \tilde{B})^{C}=\tilde{A}^{C} \cap \tilde{B}^{C}$ and $(\tilde{A} \cap \tilde{B})^{C}=\tilde{A}^{C} \cup \tilde{B}^{C}$ (De Morgan's law)
(11) $\tilde{A} \cup \Omega=\Omega, \tilde{A} \cap \Omega=\tilde{A}, \tilde{A} \cup \emptyset=\tilde{A}$ and $\tilde{A} \cap \emptyset=\emptyset$
(12) Generally, $\tilde{A} \cup \tilde{A}^{C} \neq \Omega$ and $\tilde{A} \cap \tilde{A}^{C} \neq \emptyset$ (unsatisfaction of complementary laws)

Possibility Theory: Possibility and Necessity

- Basic Treatment: by Possibility and Necessity
(Common in Non-probabilistic Uncertainty Theories)
Crisp (Non-fuzzy) Case: A : possible region, B : event

Possibility
B is possible $\leftarrow \rightarrow B \cap A=\varnothing$
$\leftrightarrow \exists z: z \in A \wedge z \in B$

Necessity (Certainty)
B is certain $\leftarrow \rightarrow B \supseteq A$
$\leftrightarrow \forall z: z \in A \rightarrow z \in B$

Possibility Theory: Possibility and Necessity

- Basic Treatment: by Possibility and Necessity (Common in Non-probabilistic Uncertainty Theories)

Crisp (Non-fuzzy) Case: A : possible region, B : event

Possibility
B is possible $\leftarrow \rightarrow B \cap A \neq \varnothing$

$$
\leftrightarrow \exists z: z \in A \wedge z \in B
$$

Possibility Theory

- Possibility and Necessity Meas

Possibility Measure
takes 1 if and only if an event is possible and 0 otherwise:

$$
\Pi_{A}(B)=\left\{\begin{array}{lll}
1 & : & A \cap B \neq \emptyset \\
0 & : & A \cap B=\emptyset
\end{array}\right.
$$

$\min \left(\chi_{A}(x), \chi_{B}(x)\right)$

Extend these measures to Fuzzy Sets
\rightarrow Express $\Pi_{A}(B)$ and $N_{A}(B)$ by the characteristic functions

$$
\Pi_{A}(B)=\sup _{x} \min \left(\chi_{A}(x), \chi_{B}(x)\right)
$$

sures under Crisp Sets

Necessity Measure

takes 1 if and only if an event is necessary (certain, sure) and 0 otherwise:

$$
N_{A}(B)=\left\{\begin{array}{lll}
1 & : & A \subseteq B \\
0 & : & A \nsubseteq B
\end{array}\right.
$$

Extend these measures to Fuzzy Sets
\rightarrow Express $\Pi_{A}(B)$ and $N_{A}(B)$ by the characteristic functions

$$
\begin{aligned}
& \Pi_{A}(B)=\sup _{x} \min \left(\chi_{A}(x), \chi_{B}(x)\right) \\
& N_{A}(B)=\inf _{x} \max \left(1-\chi_{A}(x), \chi_{B}(x)\right)
\end{aligned}
$$

Possibility Theory

- Possibility and Necessity Measures
- Crisp Case:

$$
\begin{aligned}
& \Pi_{A}(B)=\sup _{x} \min \left(\chi_{A}(x), \chi_{B}(x)\right) \\
& N_{A}(B)=\inf _{x} \max \left(1-\chi_{A}(x), \chi_{B}(x)\right)
\end{aligned}
$$

- Fuzzy Case: $\exists x \in \Omega, \mu_{\tilde{A}}(x)=1$ (the normality of \tilde{A}) is assumed.

Possibility Measure (Zadeh, 1978)

$$
\Pi_{\tilde{A}}(\tilde{B})=\sup _{x} \min \left(\mu_{\tilde{A}}(x), \mu_{\tilde{B}}(x)\right)
$$

Necessity Measure (Dubois \& Prade, 1980)

$$
N_{\tilde{A}}(\tilde{B})=\inf _{x} \max \left(1-\mu_{\tilde{A}}(x), \mu_{\tilde{B}}(x)\right)
$$

Possibility Theory

- Properties of possibility and necessity measures
Axioms of possibility measure

1. $\Pi_{\tilde{A}}(\Omega)=1, \Pi_{\tilde{A}}(\emptyset)=0$
2. $\Pi_{\tilde{A}}(\tilde{B} \cup \tilde{C})=\max \left(\Pi_{\tilde{A}}(\tilde{B}), \Pi_{\tilde{A}}(\tilde{C})\right)$ maxivity
Axioms of necessity measure

$$
\text { 1. } N_{\tilde{A}}(\Omega)=1, \quad N_{\tilde{A}}(\emptyset)=0
$$

2. $N_{\tilde{A}}(\tilde{B} \cap \tilde{C})=\min \left(N_{\tilde{A}}(\tilde{B}), N_{\tilde{A}}(\tilde{C})\right)$ minivity

Special kinds of Fuzzy Measures

Possibility Theory

- Properties of possibility and necessity measures

Axioms of possibility measure

1. $\Pi_{\tilde{A}}(\Omega)=1, \Pi_{\tilde{A}}(\emptyset)=0$
2. $\Pi_{\tilde{A}}(\tilde{B} \cup \tilde{C})=\max \left(\Pi_{\tilde{A}}(\tilde{B}), \Pi_{\tilde{A}}(\tilde{C})\right)$
$N_{\tilde{A}}(\tilde{B})=1-\Pi_{\tilde{A}}\left(\tilde{B}^{C}\right)$

$$
N_{\tilde{A}}(\tilde{B}) \leqq \Pi_{\tilde{A}}(\tilde{B})
$$

$\tilde{B} \subseteq \tilde{C} \Rightarrow \Pi_{\tilde{A}}(\tilde{B}) \leqq \Pi_{\tilde{A}}(\tilde{C}), N_{\tilde{A}}(\tilde{B}) \leqq N_{\tilde{A}}(\tilde{C})$ $\max \left(\Pi_{\tilde{A}}(\tilde{B}), \Pi_{\tilde{A}}\left(\tilde{B}^{C}\right)\right) \geqq 0.5$ $\min \left(N_{\tilde{A}}(\tilde{B}), N_{\tilde{A}}\left(\tilde{B}^{C}\right)\right) \leqq 0.5$
$\Pi_{\tilde{A}}(\tilde{B})>h \Leftrightarrow(\tilde{A})_{h} \cap(\tilde{B})_{h} \neq \emptyset$

$$
N_{\tilde{A}}(\tilde{B}) \geqq h \Leftrightarrow(\tilde{A})_{1-h} \subseteq[\tilde{B}]_{h}
$$

Axioms of necessity measure

1. $N_{\tilde{A}}(\Omega)=1, N_{\tilde{A}}(\emptyset)=0$
2. $N_{\tilde{A}}(\tilde{B} \cap \tilde{C})=\min \left(N_{\tilde{A}}(\tilde{B}), N_{\tilde{A}}(\tilde{C})\right)$ where $\quad[\tilde{A}]_{h}=\left\{x \in \Omega: \mu_{\tilde{A}}(x) \geq h\right\}$

$$
(\tilde{A})_{h}=\left\{x \in \Omega: \mu_{\tilde{A}}(x)>h\right\}
$$

When B is a usual (crisp) set,

$$
\begin{aligned}
& \max \left(\Pi_{\tilde{A}}(B), \Pi_{\tilde{A}}\left(B^{C}\right)\right)=1 \\
& \min \left(N_{\tilde{A}}(B), N_{\tilde{A}}\left(B^{C}\right)\right)=0 \\
& N_{\tilde{A}}(B)>0 \Rightarrow \Pi_{\tilde{A}}(B)=1 \\
& \Pi_{\tilde{A}}(B)<1 \Rightarrow N_{\tilde{A}}(B)=0
\end{aligned}
$$

Relations to Belief Function

- When B is a crisp set and \tilde{A} is a fuzzy set having discrete membership grades, possibility and necessity measures equal to plausibility and belief functions of a consonant basic probability assignment.

Fuzzy Set \tilde{A}
Basic probability assignment m_{A}

$$
\mu_{\tilde{A}}(x)=p l(x)
$$

Consonant Belief Function

$$
F_{4} \subseteq F_{3} \subseteq F_{2} \subseteq F_{1}: \text { focal elements are nested }
$$

For crisp set B, we obtain

$$
\begin{gathered}
\Pi_{\tilde{A}}(B)=\sup _{x} \min \left(\mu_{\tilde{A}}(x), \chi_{B}(x)\right)=\sup _{x \in B} \mu_{\tilde{A}}(x)=\sum_{F_{i}: F_{i} \cap B \neq \emptyset} m_{A}\left(F_{i}\right)=p l(B) \\
N_{\tilde{A}}(B)=\inf _{x} \max \left(1-\mu_{\tilde{A}}(x), \chi_{B}(x)\right)=\inf _{x \notin B}\left(1-\mu_{\tilde{A}}(x)\right)=\sum_{F_{i}: F_{i} \subseteq B} m_{A}\left(F_{i}\right)=\operatorname{bel}(B)
\end{gathered}
$$

Fuzzy Set \tilde{A}
Basic probability assignment m_{A}

$$
F_{4} \subseteq F_{3} \subseteq F_{2} \subseteq F_{1}: \text { focal elements are nested }
$$

For crisp set B, we obtain

$$
\begin{gathered}
\Pi_{\tilde{A}}(B)=\sup _{x} \min \left(\mu_{\tilde{A}}(x), \chi_{B}(x)\right)=\sup _{x \in B} \mu_{\tilde{A}}(x)=\sum_{F_{i} F_{i} \cap B \neq \varnothing} m_{A}\left(F_{i}\right)=p l(B) \\
N_{\tilde{A}}(B)=\inf _{x} \max \left(1-\mu_{\tilde{A}}(x), \chi_{B}(x)\right)=\inf _{x \notin B}\left(1-\mu_{\tilde{A}}(x)\right)=\sum_{F_{i}: F_{i} \leq B} m_{A}\left(F_{i}\right)=\operatorname{bel}(B)
\end{gathered}
$$

Consonant Belief Function
$F_{4} \subseteq F_{3} \subseteq F_{2} \subseteq F_{1}$: focal elements are nested.

However, for fuzzy set \widetilde{B}, we obtain

Not same!

$$
\begin{array}{lll}
\Pi_{\tilde{A}}(\tilde{B})=\sup _{x} \min \left(\mu_{\tilde{A}}(x), \mu_{\tilde{B}}(x)\right)=(S) \int \mu_{\tilde{B}} \circ \Pi & \text { v.s. } & (C) \int \mu_{\tilde{B}} d(p l) \\
N_{\tilde{A}}(\tilde{B})=\inf _{x} \max \left(1-\mu_{\tilde{A}}(x), \mu_{\tilde{B}}(x)\right)=(S) \int \mu_{\tilde{B}} \circ N & \text { v.s. } & (C) \int \mu_{\tilde{B}} d(\text { bel })
\end{array}
$$

Fuzzy Set \tilde{A}

Basic probability assignment m_{A}

Consonant Belief Function

$$
F_{4} \subseteq F_{3} \subseteq F_{2} \subseteq F_{1}: \text { focal elements are nested. }
$$

Application to Decision Making ~ Ranking Fuzzy Numbers ~

- Consider a simple decision making problem is to select one from several options whose rewards are estimated by fuzzy numbers.

alternative (option)	expected income (reward)
o_{1}	\tilde{A}_{1}
o_{2}	\tilde{A}_{2}
\vdots	\vdots
o_{n}	\tilde{A}_{n}

Ranking alternatives using a fuzzy goal

- Fuzzy goal (fuzzy set of satisfactory rewards)

We suppose that the decision maker can specify a fuzzy goal \tilde{G}. The membership grade $\mu_{\tilde{G}}(x)$ of the fuzzy goal \tilde{G} shows the degree of satisfaction.
$\mu_{\tilde{G}}$ is similar to a utility function

Ranking alternatives using a fuzzy goal

- Possibility measure maximization

A principle,
"the higher the possibility of satisfaction, the better the solution".

Ranking alternatives using a fuzzy goal

- Possibility measure maximization

Possibility measure maximization: Select $\tilde{A}_{i^{*}}$ such that

$$
\Pi_{\tilde{A}_{i^{*}}}(\tilde{G})=\max _{i} \Pi_{\tilde{A}_{i}}(\tilde{G})
$$

$$
\begin{aligned}
& \Pi_{\tilde{A}}(\tilde{G}) \\
& =\sup _{x} \min \left(\mu_{\tilde{A}}(x), \mu_{\tilde{G}}(x)\right) \\
& =(S) \int \mu_{\tilde{G}} \circ \Pi
\end{aligned}
$$

Corresponding to Expected Utility

Ranking alternatives using a fuzzy goal

- Necessity measure maximization

A principle, "the higher the necessity (certainty) of satisfaction, the better the solution".

$$
\begin{aligned}
& N_{\tilde{A}}(\tilde{G}) \\
& =\inf _{x} \max \left(1-\mu_{\tilde{A}}(x), \mu_{\tilde{G}}(x)\right) \\
& =1-\sup _{x} \min \left(\mu_{\tilde{A}}(x), 1-\mu_{\tilde{G}}(x)\right)
\end{aligned}
$$

Necessity degree of satisfaction

Ranking alternatives using a fuzzy goal

- Necessity measure maximization

Necessity measure maximization: Select $\tilde{A}_{i^{*}}$ such that

$$
N_{\tilde{A}_{i^{*}}}(\tilde{G})=\max _{i} N_{\tilde{A}_{i}}(\tilde{G})
$$

$$
\begin{aligned}
& N_{\tilde{A}}(\tilde{G}) \\
& =\inf _{x} \max \left(1-\mu_{\tilde{A}}(x), \mu_{\tilde{G}}(x)\right) \\
& =1-\sup _{x} \min \left(\mu_{\tilde{A}}(x), 1-\mu_{\tilde{G}}(x)\right) \\
& =(S) \int \mu_{\tilde{G}} \circ N
\end{aligned}
$$

Corresponding to Expected Utility

Ranking alternatives using a fuzzy goal

- Decision-maker's attitude toward uncertainty Inuiguchi \& Ichihashi (1990)

Definition
Uncertainty averse: Uncertainty prone: Uncertainty neutral:

$$
\begin{aligned}
& \tilde{A} \subseteq \tilde{B} \Rightarrow \tilde{A} \succeq \tilde{B} \\
& \tilde{A} \subseteq \tilde{B} \Rightarrow \tilde{B} \succeq \tilde{A}
\end{aligned}
$$

Neither uncertainty averse nor uncertainty prone.

Ranking alternatives using a fuzzy goal

- Decision-maker's attitude toward uncertainty

Definition
Uncertainty averse:
Uncertainty prone: Uncertainty neutral: Neither uncertainty averse nor uncertainty prone.

Properties:

possibility measure maximization
\Rightarrow uncertainty prone
necessity measure maximization
\Rightarrow uncertainty averse

Ranking alternatives using a fuzzy goal

- Relative possibility measure maximization

Inuiguchi \& Ichihashi (1990)

Relative possibility measure (RP): The degree to what extent the possibility of satisfaction is larger than the possibility of unsatisfaction.

$$
R P_{\tilde{A}}(\tilde{G})=\max \left(\Pi_{\tilde{A}}(\tilde{G})-\Pi_{\tilde{A}}\left(\tilde{G}^{c}\right), 0\right)
$$

Dual RP measure (DRP):
The degree to what extent the possibility of satisfaction is not smaller than the possibility of unsatisfaction.
$D R P_{\tilde{A}}(\tilde{G})=\min \left(1-\Pi_{\tilde{A}}\left(\tilde{G}^{c}\right)+\Pi_{\tilde{A}}(\tilde{G}), 1\right)$.

Ranking alternatives using a fuzzy goal

- Relative possibility measure maximization

We have the following relation:
One of $R P_{\tilde{A}}(\tilde{G})$ and $D R P_{\tilde{A}}(\tilde{G})$ is constant.

$$
\begin{aligned}
& R P_{\tilde{A}}(\tilde{G})>0 \Rightarrow D R P_{\tilde{A}}(\tilde{G})=1 \\
& D R P_{\tilde{A}}(\tilde{G})<1 \Rightarrow R P_{\tilde{A}}(\tilde{G})=0
\end{aligned}
$$

$$
R P_{\tilde{A}}(\tilde{G})+D R P_{\tilde{A}}(\tilde{G})=\Pi_{\tilde{A}}(\tilde{G})+N_{\tilde{A}}(\tilde{G})
$$

$$
\Rightarrow\left[\Pi_{\tilde{A}}(\tilde{G})+N_{\tilde{A}}(\tilde{G}) \geq \Pi_{\tilde{B}}(\tilde{G})+N_{\tilde{B}}(\tilde{G}) \Leftrightarrow \tilde{A} \succeq^{R P} \tilde{B}\right]
$$

Relative possibility measure maximization:

$$
\max _{i}\left(\Pi_{\tilde{A}_{i}}(\tilde{G})+N_{\tilde{A}_{i}}(\tilde{G})\right)
$$

2023/10/31 BFTA 2023

Ranking alternatives using a fuzzy goal

- Relative possibility measure maximization

Relative possibility measure maximization:

$$
\max _{i}\left(\Pi_{\tilde{A}_{i}}(\tilde{G})+N_{\tilde{A}_{i}}(\tilde{G})\right)
$$

Relative possibility measure maximization \Rightarrow uncertainty neutral

Fuzzy Mathematical Programming Approach - Conventional MP approach

Fuzzy Mathematical Programming Approach

- Fuzzy MP approach

How to Use Fuzzy (Possibilistic) Programming?

- Production Planning

Inuiguchi \& Ramik (2000)
In a factory, the factory manager intends to manufacture a new product A . The total manufacturing process is composed of three processes, Process 1, Process 2 and Process 3. This is the same as that of Product B. The estimated processing time for manufacturing a batch of Product A at each process is as follows: about 2 time units at Process 1, about 4 time units at Process 2 and about 1 time unit at Process 3. On the other hand, the processing time for manufacturing a batch of Product B at each process is as follows: about 3 time units at Process 1, about 2 time units at Process 2 and about 3 time units at Process 3. The working time at Process 1 is restricted by 240 time units, that at Process 2 is restricted by 400 time units and that at Process 3 is restricted by 210 time units. The profit rates ($100 \$ /$ batch) of Products A and B are about 5 and about 7, respectively. How many Products A and B should be manufactured in order to maximize the total profit ?

How to Use Fuzzy (Possibilistic) Programming?

- The conventional linear programming approach

How to Use Fuzzy (Possibilistic) Programming?

- The conventional linear programming approach

$$
\begin{aligned}
\left(x_{1}, x_{2}\right)^{\mathrm{T}} & =(90,20)^{\mathrm{T}} \\
2 & \times 90+3 \times 20=240 \\
4 & \times 90+2 \times 20=400 \\
90+3 & \times 20<210
\end{aligned}
$$

Risky in the sense of the Feasibility !!

	\square	$\mathbf{8 3 \%}$
240	\rightarrow	199.2
400	\rightarrow	332
210	\rightarrow	174.3

How to Use Fuzzy (Possibilistic) Programming?

- Possibilistic (Fuzzy) Programming Approach

The processing time: 'about 2 time units'

Ask crisp values

How to Use Fuzzy (Possibilistic) Programming?

- Possibilistic (Fuzzy) Programming Approach
- Meaning of a Symmetric Triangular Fuzzy Number

Symmetric Triangular Fuzzy Number $\langle 2,0.7\rangle$

- '2' is the most plausible value.
- At most 2.7, i.e., more than 2.7 is impossible.
- At least 1.3, i.e., less than 1.3 is impossible.
- Possibility more than 2 and less than 2 are the same.
- The membership value linearly decreases as it departs from 2.

How to Use Fuzzy (Possibilistic) Programming?
 - Possibilistic (Fuzzy) Programming Approach

Process 1	New Product A: x_{1}	$\begin{gathered} \text { Product B: } \\ x_{2} \end{gathered}$	Working Time	The obtained fuzzy numbers		
				product	A B	Working
	2	3	$\leqq 240$	Process 1	$\tilde{A}_{1}=\langle 2,0.7\rangle \tilde{B}_{1}=\langle 3,0.5\rangle$	240
Process 2	$\widetilde{4}$	$\widetilde{2}$	$\leqq 400$	Process 2	$\tilde{A}_{2}=\langle 4,1.5\rangle \tilde{B}_{2}=\langle 2,0.3\rangle$	400
-				Process 3	$\tilde{A}_{3}=\langle 1,0.5\rangle \tilde{B}_{3}=\langle 3,0.3\rangle$	210
Process 3	$\widetilde{1}$	3	$\leqq 210$	profit rate	$\tilde{C}_{1}=\langle 5,1\rangle \quad \tilde{C}_{2}=\langle 7,0.7\rangle$	

New

Product A:
x_{1}
$\widetilde{2}$
$\widetilde{2} \leqq 400$
$\widetilde{3} \leqq 210$
max
A is more uncertain than B.

How to Use Fuzzy (Possibilistic) Programming?
 - Possibilistic (Fuzzy) Programming Approach

$$
\begin{aligned}
\operatorname{maximize} & c_{1} x_{1}+c_{2} x_{2} \\
\text { subject to } & a_{1} x_{1}+b_{1} x_{2} \leq 240 \\
& a_{2} x_{1}+b_{2} x_{2} \leq 400 \\
& a_{3} x_{1}+b_{3} x_{2} \leq 210 \\
& x_{1} \geq 0, x_{2} \geq 0
\end{aligned}
$$

where possibilistic variable a_{i} restricted by \tilde{A}_{i} possibilistic variable b_{i} restricted by \tilde{B}_{i} possibilistic variable c_{i} restricted by \tilde{C}_{i}

How to Use Fuzzy (Possibilistic) Programming?

- Possibilistic (Fuzzy) Programming Approach
- Calculation of Possibilistic Linear Function value (Extension Principle)
$f_{0}\left(x_{1}, x_{2}\right)=c_{1} x_{1}+c_{2} x_{2}$ is restricted by a fuzzy number $F_{0}\left(x_{1}, x_{2}\right) ;$

$$
\mu_{F_{0}\left(x_{1}, x_{2}\right)}(r)=\sup _{\substack{p, q \\ r=p x_{1}+q x_{2}}} \min \left(\mu_{\tilde{C}_{1}}(p), \mu_{\tilde{C}_{2}}(q)\right)
$$

Example: $\quad z=\sum_{j=1}^{n} k_{j} y_{j}, \quad y_{i} \in Y_{j}=\left\langle y_{j}^{\mathrm{c}}, w_{j}\right\rangle$

Fuzzy linear function value with triangular fuzzy numbers

How to Use Fuzzy (Possibilistic) Programming?

- Possibilistic (Fuzzy) Programming Approach
- Calculation of Possibilistic Linear Function value (Extension Principle)

Example: $\quad z=\sum_{j=1}^{n} k_{j} y_{j}, \quad y_{i} \in Y_{j}=\left\langle y_{j}^{\mathrm{c}}, w_{j}\right\rangle$

Calculate

$$
2 \times\langle 1,0.75\rangle+\langle 2,1\rangle .
$$

How to Use Fuzzy (Possibilistic) Programming?

- Possibilistic (Fuzzy) Programming Approach $x_{1} \geq 0, x_{2} \geq 0$
- Calculation of Possibilistic Linear Function value (Extension Principle)

$$
\begin{aligned}
& f_{0}\left(x_{1}, x_{2}\right)=c_{1} x_{1}+c_{2} x_{2}, \quad C_{1}=\langle 5,1\rangle, C_{2}=\langle 7,0.7\rangle \\
& \quad \Rightarrow f_{0}\left(x_{1}, x_{2}\right) \in F_{0}\left(x_{1}, x_{2}\right)=\left\langle 5 x_{1}+7 x_{2}, x_{1}+0.7 x_{2}\right\rangle
\end{aligned}
$$

In the same way, calculate: $f_{i}\left(x_{1}, x_{2}\right)=a_{i} x_{1}+b_{i} x_{2}, a_{i} \in \tilde{A}_{i}, b_{i} \in \tilde{B}_{i}$

$$
\begin{aligned}
& \tilde{A}_{1}=\langle 2,0.7\rangle \\
& \tilde{B}_{1}=\langle 3,0.5\rangle \\
& \tilde{A}_{2}=\langle 4,1.5\rangle \tilde{B}_{2}=\langle 2,0.3\rangle \\
& \tilde{A}_{3}=\langle 1,0.5\rangle \tilde{B}_{3}=\langle 3,0.3\rangle
\end{aligned}
$$

$$
\begin{aligned}
& f_{1}\left(x_{1}, x_{2}\right) \in F_{1}\left(x_{1}, x_{2}\right) ? \\
& f_{2}\left(x_{1}, x_{2}\right) \in F_{2}\left(x_{1}, x_{2}\right) ?
\end{aligned}
$$

$$
f_{3}\left(x_{1}, x_{2}\right) \in F_{3}\left(x_{1}, x_{2}\right) ?
$$

How to Use Fuzzy (Possibilistic) Programming?

- Possibilistic (Fuzzy) Programming Approach
- Inequality Indices based on Possibility Theory

To treat a possibilistic programming problem:

- The meaning of maximization of a fuzzy (possibilistic) function
- The meaning of the fact that a fuzzy (possibilistic) function value is not greater than 240 .

Possibility and Certainty Degree of $\alpha \leq g$ (α : possibilistic variable)

$$
\begin{aligned}
& \operatorname{Pos}(\alpha \leq g)=\Pi_{A}((-\infty, g])=\sup \left\{\mu_{A}(r) \mid r \leq g\right\} \\
& \operatorname{Nes}(\alpha \leq g)=N_{A}((-\infty, g])=1-\sup \left\{\mu_{A}(r) \mid r>g\right\}
\end{aligned}
$$

How to Use Fuzzy (Possibilistic) Programming?

- Possibilistic (Fuzzy) Programming Approach
- Inequality Indices based on Possibility Theory

Possibility and Certainty Degree of $\alpha \leq g$ (α : possibilistic variable)

$$
\begin{aligned}
\operatorname{Pos}(\alpha \leq g) & =\Pi_{A}((-\infty, g]) \\
& =\sup \left\{\mu_{A}(r) \mid r \leq g\right\}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Nes}(\alpha \leq g) & =N_{A}((-\infty, g]) \\
& =1-\sup \left\{\mu_{A}(r) \mid r>g\right\}
\end{aligned}
$$

How to Use Fuzzy (Possibilistic) Programming?

- Possibilistic (Fuzzy) Programming Approach
- Inequality Indices based on Possibility Theory

Possibility and Certainty Degree of $\alpha \geq g$ (α : possibilistic variable)

$$
\begin{aligned}
\operatorname{Pos}(\alpha \geq g) & =\Pi_{A}([g,+\infty)) \\
& =\sup \left\{\mu_{A}(r) \mid r \geq g\right\}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Nes}(\alpha \geq g) & =N_{A}([g,+\infty)) \\
& =1-\sup \left\{\mu_{A}(r) \mid r<g\right\}
\end{aligned}
$$

How to Use Fuzzy (Possibilistic) Programming?

- Possibilistic (Fuzzy) Programming Approach
- Formulation of the Possibilistic Linear Programming Problem
- Treatment of Constraints

Assume that each working time cannot be extended for some reasons, such as the limited workshop space even if part-time workers are employed. In such a case, the constraints should be satisfied with high certainty (e.g., 0.8).

$$
\begin{aligned}
& \operatorname{Nes}\left(a_{1} x_{1}+b_{1} x_{2} \leq 240\right) \geq 0.8 \\
& \operatorname{Nes}\left(a_{2} x_{1}+b_{2} x_{2} \leq 400\right) \geq 0.8 \\
& \operatorname{Nes}\left(a_{3} x_{1}+b_{3} x_{2} \leq 210\right) \geq 0.8 \\
& x_{1} \geq 0, x_{2} \geq 0
\end{aligned}
$$

$$
\begin{array}{ll}
\tilde{A}_{1}=\langle 2,0.7\rangle & \tilde{B}_{1}=\langle 3,0.5\rangle \\
\tilde{A}_{2}=\langle 4,1.5\rangle & \tilde{B}_{2}=\langle 2,0.3\rangle \\
\tilde{A}_{3}=\langle 1,0.5\rangle & \tilde{B}_{3}=\langle 3,0.3\rangle
\end{array}
$$

How to Use Fuzzy (Possibilistic) Programming?

- Possibilistic (Fuzzy) Programming Approach
- Formulation of the Possibilistic Linear Programming Problem
- Treatment of Constraints

Analysis of $\operatorname{Nes}\left(a_{1} x_{1}+b_{1} x_{2} \leq 240\right) \geq 0.8$ $\operatorname{Nes}\left(a_{1} x_{1}+b_{1} x_{2} \leq 240\right) \geq 0.8 \Longleftrightarrow t \leq 240$

$$
\operatorname{Nes}\left(a_{1} x_{1}+b_{1} x_{2} \leq 240\right) \geq 0.8
$$

How to Use Fuzzy (Possibilistic) Programming?

- Possibilistic (Fuzzy) Programming Approach
- Formulation of the Possibilistic Linear Programming Problem
- Treatment of Constraints

$$
\begin{aligned}
& \text { Nes }\left(a_{1} x_{1}+b_{1} x_{2} \leq 240\right) \geq 0.8, \\
& \mathrm{Nes}\left(a_{2} x_{1}+b_{2} x_{2} \leq 400\right) \geq 0.8, \\
& \text { Nes }\left(a_{3} x_{1}+b_{3} x_{2} \leq 210\right) \geq 0.8, \\
& x_{1} \geq 0, x_{2} \geq 0 .
\end{aligned}
$$

How to Use Fuzzy (Possibilistic) Programming?

- Possibilistic (Fuzzy) Programming Approach
- Formulation of the Possibilistic Linear Programming Problem
- Treatment of the Objective Function
- Fractile Optimization Model (Value at Certainty Degree 0.8)

Assume that the decision maker has a great interest in the expected profit with high certainty (e.g., 0.8). Of course, the larger

maximize u, subject to

$$
\operatorname{Nes}\left(c_{1} x_{1}+c_{2} x_{2} \geq u\right) \geq 0.8
$$ Maximize u under Q is located at the right side of P.

maximize $4.2 x_{1}+6.44 x_{2}$

How to Use Fuzzy (Possibilistic) Programming?

- Possibilistic (Fuzzy) Programming Approach
- Formulation of the Possibilistic Linear Programming Problem
- Treatment of the Objective Function
- Modality Optimization Model

Assume that the decision maker wants to maximize the certainty degree of the event that the profit is not smaller than 45,000
 maximize
$\operatorname{Nes}\left(c_{1} x_{1}+c_{2} x_{2} \geq 450\right)$. Maximize h under Q is located at the right side of P.

$$
\text { maximize } \frac{5 x_{1}+7 x_{2}-450}{x_{1}+0.7 x_{2}}
$$

Because of the same reference function, we have the linear fractional objective function.

How to Use Fuzzy (Possibilistic) Programming?

- Possibilistic (Fuzzy) Programming Approach
- Formulation of the Possibilistic Linear Programming Problem
- Fractile Optimization Model maximize $4.2 x_{1}+6.44 x_{2}$, subject to $2.56 x_{1}+3.4 x_{2} \leq 240$, $5.2 x_{1}+2.24 x_{2} \leq 400$,
maximize $5 y_{1}+7 y_{2}-450 t$
subject to $\left.2.56 y_{1}+3.4 y_{2} \leq 240 t, 99,57.04\right)^{\mathrm{T}}$ $1.4 x_{1}+3.24 x_{2} \leq 210$, $x_{1} \geq 0, x_{2} \geq 0$. $5.2 y_{1}+2.24 y_{2} \leq 400 t$, $1.4 y_{1}+3.24 y_{2} \leq 210 t$,
maximize

$$
5 x_{1}+7 x_{2}-450
$$

$$
y_{1}+0.7 y_{2}=1
$$

subject to

$$
2.56 x_{1}+3.4 x_{2} \leq 240
$$

$$
y_{1} \geq 0, y_{2} \geq 0, t \geq 0
$$

$$
5.2 x_{1}+2.24 x_{2} \leq 400
$$

$$
1.4 x_{1}+3.24 x_{2} \leq 210
$$

$$
\text { Solution: }\left(x_{1}, x_{2}\right)^{\mathrm{T}} \approx(17.99,57.04)^{\mathrm{T}}
$$

$$
x_{1} \geq 0, x_{2} \geq 0
$$

How to Use Fuzzy

 (Possibilistic) Programming?
- Comparison of Solutions

- The solution to 83%-Problem: The certainty degree of the satisfaction of constraints on working time at Process 1 and Process 2 is not high enough.
- Thus, we may regard the solution to 83%-Problem as an ill-matched solution to the decision maker's intention.
maximize h,
subject to $(5-h) x_{1}+(7-0.7 h) x_{2} \geq 450$, $(6-h) x_{1}+(7.7-0.7 h) x_{2} \geq 530$
$2.56 x_{1}+3.4 x_{2} \leq 240$,
$5.2 x_{1}+2.24 x_{2} \leq 400$, $1.4 x_{1}+3.24 x_{2} \leq 210$, $x_{1} \geq 0, x_{2} \geq 0$.

$$
\begin{aligned}
\operatorname{maximize} & h, \\
\text { subject to } & 5 y_{1}+7 y_{2}-450 t \geq h, \\
& 6 y_{1}+7.7 y_{2}-530 t \geq h, \\
& 2.56 y_{1}+3.4 y_{2} \leq 240 t, \\
& 5.2 y_{1}+2.24 y_{2} \leq 400 t \\
& 1.4 y_{1}+3.24 y_{2} \leq 210 t, \\
& y_{1}+0.7 y_{2}=1, \\
& y_{1} \geq 0, y_{2} \geq 0, t \geq 0
\end{aligned}
$$

How to Use Fuzzy

(Possibilistic) Programming?

- Comparison of Solutions

Assume that the decision maker is not satisfied with the solution of Poss. If he/she requires that the possibility degree of the event that the profit is not smaller than 53,000 USD is as high as the necessity degree of the event that the profit is not smaller than 45,000 USD, we can Reformulate the objective function as

$$
\begin{array}{r}
\operatorname{maximize} \quad \min \left(\operatorname{Nes}\left(c_{1} x_{1}+c_{2} x_{2} \geq 450\right)\right. \\
\left.\operatorname{Pos}\left(c_{1} x_{1}+c_{2} x_{2} \geq 530\right)\right)
\end{array}
$$

Solution: $\left(x_{1}, x_{2}\right)^{\mathrm{T}} \approx(64.68,21.89)^{\mathrm{T}}$

How to Use Fuzzy (Possibilistic) Programming?

- Comparison of Solutions

Assume that the decision maker is not satisfied with the solution of Poss. If he/she requires that the possibility degree of the event that the profit is not smaller than 53,000 USD is as high as the necessity degree of the event that the profit is not smaller than 45,000 USD, we can Reformulate the objective function as maximize $\min \left(\operatorname{Nes}\left(c_{1} x_{1}+c_{2} x_{2} \geq 450\right)\right.$,

$$
\left.\operatorname{Pos}\left(c_{1} x_{1}+c_{2} x_{2} \geq 530\right)\right)
$$

Solution: $\left(x_{1}, x_{2}\right)^{\mathrm{T}} \approx(64.68,21.89)^{\mathrm{T}}$

How to Use Fuzzy

 (Possibilistic) Programming?
- Comparison of Solutions

As shown in Figure, compared to Pos, Modified makes the possibility degree of the event that the profit is not smaller than 53,000 USD a little bit higher but it makes the certainty degree of the event that the profit is not smaller than 45,000 USD lower. The decision maker may know that he cannot offer a higher requirement than the solution to Problems Pos and Modified.

Brief Review

- Possibilistic (fuzzy) Programming Approach
- Formulations \& Reduced Problems
- Various Solutions reflecting DM's

Pos
$\left(x_{1}, x_{2}\right)^{\mathrm{T}} \approx$
Modified
$\left(x_{1}, x_{2}\right)^{\mathrm{T}} \approx$ intension
wants to ent that
even the it is not that of rtainty

- The reduced problems are simpler than those of stochastic programming approach.

Possibility Theory
 (Possibility and Necessity Measures)

- Extension of Inequality Relation for Fuzzy Numbers based on possibility and necessity measures (Dubois \& Prade, 1983)
- Four extended inequality relations
- Inequality relation \rightarrow fuzzy inequality relation (preference relation) (Inuiguchi et al., 1991)
- Possible and Necessary Optimality
- Extension of optimality by possibility and necessity measures
(Inuiguchi \& Sakawa, 1994)
Optimality \rightarrow Soft-optimality $=$ Minimax regret approach
(Inuiguchi \& Sakawa, 1995 \& 1998)
- Optimality \rightarrow Efficiency (Pareto Optimality)
(Inuiguchi \& Sakawa, 1996)
- Etc.

Possibly and necessarily optimal solutions

Example 1:

maximize $\gamma^{\top} \boldsymbol{x}$, subject to $A \boldsymbol{x} \leq \boldsymbol{b} ; \gamma \in \Gamma$
where

$$
\begin{aligned}
A= & \left(\begin{array}{rrrrr}
3 & 3 & 0 & -1 & 0 \\
4 & 1 & 1 & 0 & -1
\end{array}\right)^{\top} \\
\boldsymbol{b}= & (42,24,9,0,0)^{\top} \\
\Gamma= & \left\{\left(c_{1}, c_{2}\right)^{\top}: 3.5 \leq 2 c_{1}+c_{2} \leq 5.5\right. \\
& 3.4 \leq c_{1}+2 c_{2} \leq 6,1 \leq c_{1}-c_{2} \leq 1.3 \\
& \left.1 \leq c_{1} \leq 2,0.8 \leq c_{2} \leq 2.2\right\}
\end{aligned}
$$

Optimal Solution in LP Problem with \boldsymbol{c}

Example 1: $\boldsymbol{x}=(6,6)^{\top}$

Possibly and necessarily optimal solutions
Example 1: $\quad \boldsymbol{x}=(6,6)^{\top}$

Necessarily optinal solution

Possibly and necessarily optimal solutions

Example 2:

maximize $\gamma^{\top} \boldsymbol{x}$, subject to $A \boldsymbol{x} \leq \boldsymbol{b} ; \gamma \in \Gamma$
where

$$
\begin{aligned}
A= & \left(\begin{array}{rrrrr}
3 & 3 & 0 & -1 & 0 \\
4 & 1 & 1 & 0 & -1
\end{array}\right)^{\top} \\
\boldsymbol{b}= & (42,24,9,0,0)^{\top} \\
\Gamma= & \left\{\left(c_{1}, c_{2}\right)^{\top}: c_{1}+c_{2} \geq 3\right. \\
& \left.c_{1} \geq c_{2}, c_{1} \leq 2 c_{2}, c_{1} \leq 2.5, c_{2} \leq 2\right\}
\end{aligned}
$$

Possibly and necessarily optimal solutions
Example 2: $\quad \boldsymbol{x}=(6,6)^{\top}$

Possibly
(uptimal
solution

Best necessarily soft optimal solutions

level sets of
$\widetilde{S}\left((4.69786,6.97661)^{\mathrm{t}}\right)$

Example:

Necessarily soft optimal solution to degree 0.560112

Necessity Measure

- Definition of Necessity Measure:

$$
N_{A}(B)=\inf _{r \in U} I\left(\mu_{A}(r), \mu_{B}(r)\right),
$$

$\mu_{A}:$ membership function of A
$\mu_{B}:$ membership function of B
$\rightarrow I:[0,1] \times[0,1] \rightarrow[0,1]:$ an implication function,
(I0) I is upper semi-continuous, (semi-continuity)
(I1) $I(0,0)=I(0,1)=I(1,1)=1$ and $I(1,0)=0$,
(boundary condition)
(I2) $I(a, b) \leq I(c, d)$ if $0 \leq c \leq a \leq 1$ and $0 \leq b \leq d \leq 1$.
(monotonicity)
Necessity measure shows a degree of inclusion $A \subseteq B$.

Fuzzy set

Necessity Measures

$$
\begin{aligned}
& \text { For } h \in[0,1], \\
& h \text {-level set } \\
& {[A]_{h}=\left\{r \mid \mu_{A}(r) \geq h\right\}}
\end{aligned}
$$

strong h-level set

$$
(A)_{h}=\left\{r \mid \mu_{A}(r)>h\right\}
$$

We give an enhancing sequence of conditions about $A_{i}^{T} \boldsymbol{x} \subseteq \boldsymbol{B}_{\boldsymbol{i}}$ using those 6 ranges (3 ranges for each) to express DM's requirement on robust condition.

DM expresses his/her preference on the robustnes.
from most necessary requirement to the favorable requirement by a sequence of $\operatorname{Inc}\left(i_{1}, j_{1}\right), \ldots, \operatorname{Inc}\left(i_{p}, j_{p}\right)$.

References

- L. A. Zadeh (1965): Fuzzy sets. Information and control, vol. 8, pp. 338-353.
- L.A. Zadeh (1978): Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Syst., vol.1, pp.3-28.
- D. Dubois \& H. Prade (1980): Fuzzy Sets and Systems: Theory and Applications. Academic Press, Boston/London/Dordrecht.
- M. Inuiguchi \& H. Ichihashi (1990): Relative modalities and their use in possibilistic linear programming. Fuzzy Sets and Syst., vol.35, pp.303-323.
- M. Inuiguchi \& J. Ramik (2000): Possibilistic linear programming: a brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem. Fuzzy Sets and Syst., vol.111, pp.3-28.

References

- D. Dubois \& H. Prade (1983): Ranking fuzzy numbers in the setting of possibility theory. Information Sci., vol. 30, pp. 183-224
- M. Inuiguchi, H. Ichihashi \& Y. Kume (1993): Some properties of extended fuzzy preference relations using modalities, Information Sci., vol. 61, pp. 187-209
- M. Inuiguchi \& M. Sakawa (1994): Possible and necessary optimality tests in possibilistic linear programming problems. Fuzzy Sets and Syst., vol.67, pp. 29-46.
- M. Inuiguchi \& M. Sakawa (1995): Minimax regret solution to linear programming problems with an interval objective function. Eur. J. Oper. Res., vol.86, pp. 526-536.
- M. Inuiguchi \& M. Sakawa (1998): Robust optimization under softness in a fuzzy linear programming problem. Int. J. Approx. Reasoning, vol. 18, pp. 21-34.
- M. Inuiguchi \& M. Sakawa (1996): Possible and necessary efficiency in possibilistic multiobjective linear programming problems and possible efficiency test., vol.78, pp. 231-241.

Contents

- Introduction to Fuzzy Sets
- Introduction to Possibility Theory
- Possibility and necessity measures
- Correspondence to Plausibility and Belief functions
- Application to Decision Making: Decision principles
- Possibility measure maximization
- Necessity measure maximization
- Relative possibility measure maximization
- Possibilistic (Fuzzy) Linear Programming
- (Much simpler than stochastic linear programming)

