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Motivation: Differential Privacy

Differential Privacy (Cythia Dwork): “Privacy comes from
randomization”
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Motivation: k-anonymity

k-anonymity (Latanya Sweeney): the information for each
person contained in the release cannot be distinguished from
at least k − 1 individuals whose information also appear in the
release.
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Motivation: what is the benefits of imprecision in

privacy-preserving?

Our work: Privacy comes from randomization +
imprecision

Zhou Belief functions



Background Knowledge Differential Privacy for Belief Functions Dempster-Shafer Theory of Evidence Differential Privacy

Belief functions

Definition

Let Ω be a frame of discernment and A = 2Ω be the Boolean
algebra of events. A mass assignment (or mass function) is a
mapping m : A → [0, 1] satisfying

∑
A∈Am(A) = 1. A mass

function m is called normal if m(∅) = 0.

A belief function is a function bel : A → [0, 1] satisfying the
following conditions:

1 bel(∅) = 0;

2 bel(Ω) = 1; and

3 bel(
⋃n

i=1 Ai) ≥
∑

∅≠I⊆{1,··· ,n}(−1)|I |+1bel(∩i∈IAi) where

Ai ∈ A for all i ∈ {1, · · · , n}.
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Equivalent Characterizations

Theorem

A mapping f : A → [0, 1] is a belief function if and only if its
Möbius transform is a mass assignment.

In other words,

if m : A → [0, 1] is a mass assignment, then it determines
a belief function bel : A → [0, 1] as follows:

bel(A) =
∑

B⊆A m(B) for all A ∈ A.

Moreover, given a belief function bel , we can obtain its
corresponding mass function m as follows:

m(A) =
∑

B⊆A(−1)|A\B|bel(B) for all A ∈ A.
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Interpretations

Plausibility function pl can be defined as

pl(A) := 1− bel(Ω \ A)

bel(A) measures the degree to which the evidence
supports A,

pl(A) is the upper bound on the degree of support that
could be assigned to A if more specific information
became available

m(A) measures the belief that an agent commits exactly
to A, not the total belief bel(A) that an agent commits
to A.
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Belief function vs probability function

Let Ω := {a, b, c} be a frame.

{a, b, c}

{a, b} {a, c} {b, c}

{a} {b}
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{c}
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0

mass function probability function
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Example

A murder has been committed. There are three suspects
Ω = {John, Mary, Peter}.
A witness saw the murderer going away in the darkness
and he can only assert that it was a man. However, we
know that the witness is drunk 20% of the time time.

This piece of evidence can be represented by the following
mass function:

m({John,Peter}) = 0.8, m({Ω}) = 0.2.
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Represented as a Dempster model

The mass function m arises from the following Dempster
model:

a probability space ⟨Θ,Pr⟩ where Θ = {drunk, sober}
and Pr(drunk) = 0.2;

a multivalued mapping Γ : Θ → Ω is illustrated as follows:

drunk

sober

Peter

John

Mary

✲
✿

Γ

〈Θ, P r〉 〈Ω,m〉
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Two Goals in Data Analysis: Individual Privacy

and Population Utility
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Impossible Task: Perfect Privacy + Utility
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Reconstruction attack (Dinur and Nissm 03)
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Preview of Differential Privacy
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Intuition behind Differential Privacy
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Definition of Differential Privacy
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Differential Privacy: Postprocessing
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Differential Privacy: Composition
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Approximate DP: (ϵ, δ)-DP
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The First DP: Warner’s Randomized Response
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Warner’s Mechanism: Distribution Estimation

Problem
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f -Diferential Privacy: Hypothesis-testing
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f -Diferential Privacy: Hypothesis-testing (cont.)
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f -Diferential Privacy: Definition
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Connection to (ϵ, δ)-DP
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It is natural to study DP for belief functions!
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Evidential Privacy Mechanism

Let X = {x1, · · · , xk} be a private source of information and
Y = {y1, · · · , yl} be an output alphabet.

Q is called an evidential privacy mechanism if each row of
the matrix Q is a mass function on Y

In other words, each evidential privacy mechanism Q
maps X = x to Y ∈ E with Q(x) which can be
represented by a mass mQ

x (E ) (belief bel
Q
x (E ) or

plausibility plQx (E ))
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Total Belief Theorem (Smets1994, Zhou&Cuzzolin

2017)

For each x ∈ X , belQx (E ) can be identified with
−−−−→
(belQx )X×Y

and belQ = ⊕x∈X
−−−−→
(belQx )X×Y . Let mX be a prior mass function

on X . So we obtain a total mass function mX×Y over X × Y
as mX×Y = mX ↑(X×Y ) ⊕mQ .

1 belX×Y ↾X= belX , i.e., the marginal of the total belief
function on X is the prior belief function on X ;

2 The conditional total belief functions on individual input
x (equivalently {x} × Y ) according to both Dempster’s
rule and geometric rule of conditioning are the same as
the output belief function belQx associated with the input
x in the privacy mechanism Q, i.e., for each x ∈ X ,
belY⊕ (·|{x}) = belQx and belYg (·|{x}) = belQx .
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An Uncertainty Framework for DP: Uncertainty

Factor

Let the adversary’s prior uncertainty be represented with a
set function U , which may be a mass, belief or plausibility
function, and his posterior uncertainty after observing
event E ⊆ Y be represented by another set function U ′,

the adversary’s uncertainty change can be formulated as
the following FU′,U called uncertainty factor for the two
inputs x and x ′

FU′,U(x , x
′) :=

U′(x)
U′(x ′)

U(x)
U(x ′)

(2.1)

The denominator corresponds to the initial betting odds
for x vs. x ′ before the observation. And the numerator is
the betting odds afterwards.
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DP in terms of evidential factors

DP has a very natural interpretation in terms of evidential
factor when the updating in the factor here is on the
geometric rule of conditioning. Indeed,

mQ
x (E )

mQ
x ′(E )

=
mX

g (x |E )/mX
g (x

′|E )
mX (x)/mX (x ′)

(2.2)

= F (mX
g (·|E ),mX )(x , x ′)

≤ ϵ
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Bayesian Data and Evidential Mechanism

If belX is Bayesian, belX = plX and all of focal elements in EX

are singletons. All of ϵpl , ϵbel and ϵm-DPs have a natural
semantics as evidential factor with Dempster’s rule of
conditioning on observations on the output space Y . In other
words, for any x ∈ X and E ⊆ Y ,
belX⊕(x |E)

belX⊕(x ′|E)
=

∑
E ′⊆E mX (x)mQ

x (E ′)∑
E ′⊆E mX (x ′)mQ

x′ (E
′)
= belX (x)

belX (x ′)
belQx (E)

belQ
x′ (E)

,

plX⊕(x |E)

plX⊕(x ′|E)
=

∑
E ′∩E ̸=∅ m

X (x)mQ
x (E ′)∑

E ′∩E ̸=∅ m
X (x ′)mQ

x′ (E
′)
= plX (x)

plX (x ′)
plQx (E)

plQ
x′ (E)

, and

mX
⊕(x |E)

mX
⊕(x ′|E)

= mX (x)mQ
x (E ′)

mX (x ′)mQ
x′ (E

′)
= mX (x)

mX (x ′)
mQ

x (E)

mQ
x′ (E)

.

Zhou Belief functions



Background Knowledge Differential Privacy for Belief Functions An Evidential Framwork for Differential Privacy Differential Privacy for Shafer’s Semantics LDP acording to Walley

Shafer’s random-coded messages semantics

Assume a list of codes c1, · · · , cn and the chance of ci being
chosen is pi

chooses a code at random , uses the code to encode a
message, and then sends us the result

decode the encoded message using each of the codes and
find that this always produces a message of the form “the
truth is in A” for some non-empty subset A

Let Ai denote the subset we get when we decode using ci , and
set m(A) =

∑{pi : 1 ≤ i ≤ n,Ai = A} for each A ⊆ Ω. The
number m(A) is the sum of the chances for those codes that
indicate A was the true message; it is, in a sense, the total
chance that the true message was A.
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SLDP : LDP w.r.t. Shafer’ Semantics

For an evidential privacy mechanism Q, let

rQS = maxx ,x ′∈X ,E⊆Y
mQ

x (E)

mQ
x′ (E)

and ϵQS = ln(rQS )

Definition

For any ϵ > 0, the mechanism Q is called ϵ-locally differential
private according to Shafer (ϵ-SLDP for short) if −ϵ ≤ ϵQS ≤ ϵ.

And ϵQS is called the privacy loss of Q according to Shafer and
ϵ is a privacy budget.
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Composition and Processing

If we have several building blocks for designing differentially
private algorithms, it is important to understand how we can
combine them to design more sophisticated algorithms.

Lemma

(Composition) Let Q1 be an ϵ1-SLDP evidential privacy
mechanism from X to Y1 and Q2 be an ϵ2-SLDP evidential
privacy mechanisms from X to Y2. Then their combination
Q1,2 defined by Q1,2(x) = (Q1(x),Q2(x)) is ϵ1 + ϵ2-SLDP.

Lemma

(Post-processing) Let Q be an ϵ-SLDP mechanism from X to
Y and f is a randomized algorithm from Y to another finite
alphabet set Z . Then f ◦ Q is an ϵ-SLDP mechanism from X
to Z .
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Hypothesis-Testing Framwork for SLDP

Hypothesis-Testing Interpretation

From an attacker’s perspective, the privacy requirement can
be formalized as:

H0: the underlying dataset is x vs. H1: the underlying is x ′.

PQ
x = {pr ∈ ∆(Y ) : pr ≥ belQx }

,PQ
x ′ = {pr ∈ ∆(Y ) : pr ≥ belQx ′}.
type I error αϕ = suppr∈PQ

x
Epr(ϕ)

type II error βϕ = 1− infpr∈PQ
x′
Epr(ϕ)

A test ϕ is called a level-α minimax test if
ϕ = argmin{βϕ : αϕ ≤ α}.
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Trade-off between Type I and II Errors in SLDP

Theorem

The following two statements are equivalent:

1 Q is ϵ-SLDP;

2 If type I error αϕ ∈ [l , L], then type II error
βϕ ∈ [u(L),U(l)] where
u(α) := max{e−ϵ(1− α), 1− αeϵ} and
U(α) := min{eϵ(1− α), 1− αe−ϵ}.

Figure: Trade-off between type I and II errors for SLDPZhou Belief functions
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Discrete Distribution Estimation Problem

Assume that

X1, · · · ,Xn are drawn i.i.d. according to π

A privacy mechanism Q is then applied independently to
each sample Xi to produce Y n = (Y1; · · · ,Yn).

Our goal is to estimate the distribution vector π from Y n

within a certain privacy budget requirement.
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Trade-off Between Privacy and Utility for SLDP

Theorem

Var(π̂|N1+N2 ̸= 0) = 1
(q−p)2

[πp+(1−π)q][πq+(1−π)p]A =

[−(π − 1
2
)2 + 1

4
(p+q
p−q

)2]A where A =
∑

0≤N3<n
1

n−N3(
n
N3

)
(1− q3)

n−N3qN3
3 .

Figure: The trade-off in Shafer’s semantics
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LDP according to Walley

For an evidential privacy mechanism Q, let
rWQ = maxprx∈P

belQx
,prx′∈PbelQ

x′

prx (E)
prx′ (E)

. And the logarithm

ϵWQ = ln(rWQ ) quantifies the privacy loss of the privacy
mechanism Q in Walley’s semantics of imprecise probabilities.

Definition

For any ϵ > 0, Q is called ϵ-locally differential private
according to Walley (ϵ-WLDP for short) if, −ϵ ≤ ϵWQ ≤ ϵ.

And ϵQW is called the privacy loss of Q according to Walley and
ϵ is a privacy budget.
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Compsoition and Postprocessing

Lemma

(Composition) Let Q1 be an ϵ1-WLDP evidential privacy
mechanism from X to Y1 and Q2 be an ϵ2-WLDP evidential
privacy mechanisms from X to Y2. Then their combination
Q1,2 defined by Q1,2(x) = (Q1(x),Q2(x)) is ϵ1 + ϵ2-WLDP.

Lemma

(Post-processing) Let Q be an ϵ-WLDP mechanism from X to
Y and f is a data-independent randomized algorithm from Y
to another finite alphabet set Z . Then f ◦ Q is an ϵ-WLDP
mechanism from X to Z .
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Hypothesis-Testing Interpretation

For the rejection rule ϕ, the pessimistic type I and II are
defined as αpe

ϕ = suppr∈P
belQx

Epr (ϕ) and

βpe
ϕ = suppr∈P

belQ
x′
Epr(1− ϕ), respectively.

Also we define the optimistic type I and II errors as
αop
ϕ := infpr∈P

belQx

Epr (ϕ) and βop
ϕ := infpr∈P

belQ
x′
Epr (1− ϕ),

respectively.

Definition

For the above pessimistic errors, the following function is
called the pessimistic trade-off function:
T pe(Q(x),Q(x ′))(α) := inf {βpe

ϕ : αpe
ϕ ≤ α}. For the above

optimistic errors, the following function is called the optimistic
trade-off function:
T op(Q(x),Q(x ′))(α) := sup{βop

ϕ : αop
ϕ ≤ α}.
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Trade-off Between Type I and II erros for WLDP

Theorem

The following two statements are equivalent:

1 Q is ϵ-WLDP;

2 For any α ∈ [0, 1], T pe(Q(x),Q(x ′))(α) ≥ f peϵ (α) and
T op(Q(x),Q(x ′))(α) ≤ f opϵ (α) where
f peϵ (α) = max{1− αeϵ, 0, e−ϵ(1− α)} and
f opϵ (α) = min{1− αe−ϵ, eϵ(1− α)}.

Figure: The trade-off between type I and II errors for WLDP
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Trade-off between Privacy and Utility for WLDP

Figure: Comparison of trade-offs in the two semantics
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Survey Experiments

We have conducted an online survey to show

whether our mechanism increase participants’ willingness
to provide private information in survey?

different levels of willingness to disclose privacy of
different degrees.
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A Simple and Direct Motivation

Our research was motivated by

In surveys, people may prefer not to response or say “I
don’t know” to withhold sensitive information which
minimizes the questionable ethical consequences of lying

Dempster-Shafer theory improves the root concepts of
probabilities “yes” and “no” that sum to one, by
appending a third probability of “don’t know”

Generally, explore different aspects of uncertainties in
privacy preserving
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Experiment Results

Table: Comparison of survey results

2*Questions Warner’s Mechanism Our Mechanism Undecided
Num Per Num Per Num Per

Willingness to share 160 20.81 387 50.33 222 28.87
User experience 154 20.03 399 51.89 216 28.09

Data utility 226 29.39 310 40.31 233 30.30
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Comparison at Different Sensitivity Levels
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