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Notations

X is the frame of discernment of cardinality n: X = {x1, . . . , xn}
P(X ) is its power set of cardinality 2n: P(X ) = {∅, x1, . . . , xn, (x1, x2), . . . ,X}
x is an element of X : x ∈ X
A is a subset of X , element of P(X ): A ⊆ X , A ∈ P(X )
|A| is the cardinality of A

A is the complement of A relatively to X : A = X\A
A ∩ B denotes the intersection of A and B

A ∪ B denotes the union of A and B

m is a mass function;
∑

A⊆X m(A) = 1

F = {A ⊆ X ;m(A) ̸= 0} is the set of focal sets of m

|F| is the number of focal sets of m

Bel is a belief function, Pl is the plausibility function
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Special mass functions

m is normalised if m(∅) = 0

m is Bayesian if all focal sets are singletons

m is logical (or categorical) if m(A) = 1 for some A ⊆ X . It is equivalent to A and
denoted mA:

mX represents total ignorance (and is called vacuous)

m(X ) = 1

m∅ represents total inconsistency
m(∅) = 1
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Set and probability dimensions

Belief functions extend both:

classical sets

m(A) = 1 for some A ⊆ X

probabilities ∑
x∈X

m({x}) = 1
x
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Some basic measures

x

Unary measures
Hartley entropy

H(A) = log |A|

H({x}) = 0

Shannon entropy

Sh(p) = −
∑
x∈X

p(x) log p(x)

0 if p({x}) = 1

Maximum for uniform
distribution

Binary measures
Distance between sets

d(A,B) = 1− |A ∩ B|
|A ∪ B|

Euclidean distance

d(p1, p2) =

(∑
x∈X

(p1(x)− p2(x))
2

) 1
2

Kullback-Liebler divergence

KL(p1||p2) = −
∑
x∈X

p1(x) log
p1(x)

p2(x)
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Consistency indexes

Two sets are consistent if their intersection is not empty

Consistency index

A binary consistency index between two sets is such that:

ϕ(A,B) =

{
1 if A = B

0 if A ∩ B = ∅

ϕ(A,B)

ϕp(A,B) =

{
1 if A ∩ B ̸= ∅
0 else

ϕb(A,B) =

{
1 if B ⊆ A

0 else

ϕq(A,B) =

{
1 if A ⊆ B

0 else

ϕm(A,B) =

{
1 if A = B

0 else

ϕkr (A,B) =
|A ∩ B|
|B|

ϕkp(A,B) =
|A ∩ B|
|A|

ϕj(A,B) =
|A ∩ B|
|A ∪ B|
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Main consistency indexes

A ∩ B = ∅

ϕp(A,B) =

{
1 if A ∩ B ̸= ∅
0 else

ϕb(A,B) =

{
1 if B ⊆ A

0 else
ϕq(A,B) =

{
1 if A ⊆ B

0 else
ϕm(A,B) =

{
1 if A = B

0 else

ϕj(A,B) =
|A ∩ B|
|A ∪ B| ϕkr (A,B) =

|A ∩ B|
|A| ϕkp(A,B) =

|A ∩ B|
|B|
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Uncertainty functions

Uncertainty functions can be written under the form:

f (A) =
∑
B⊆X

m(B)ϕ(A,B)

ϕ(A,B) Uncertainty functions

ϕp(A,B) =

{
1 if A ∩ B ̸= ∅
0 else

Plausibility Pl(A) =
∑

A∩B ̸=∅

m(B) =
∑
B⊆X

m(B)ϕp(A,B)

ϕb(A,B) =

{
1 if B ⊆ A

0 else
Belief Bel(A) =

∑
B⊆A

m(B) =
∑
B⊆X

m(B)ϕb(A,B)

ϕq(A,B) =

{
1 if A ⊆ B

0 else
Commonality q(A) =

∑
A⊆B

m(B) =
∑
B⊆X

m(B)ϕq(A,B)

ϕm(A,B) =

{
1 if A = B

0 else
Mass m(A) =

∑
B⊆X

m(B)ϕm(A,B)

ϕkr (A,B) =
|A ∩ B|
|B|

Pignistic probability Betp(A) =
∑
B⊆X

m(B)
|A ∩ B|
|B|

=
∑
B⊆X

m(B)ϕkr (A,B)

ϕkp(A,B) =
|A ∩ B|
|A|

- -

ϕj(A,B) =
|A ∩ B|
|A ∪ B|

- -
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Several types of uncertainty

Uncertainty
Type

Fuzziness Ambiguity

Non-specificity Discord

Belief functions

Dissonance

Incongruity

Discrepancy

Conflict

Klir and Yuan’s typology of uncertainty [8]
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Several approaches to measuring internal inconsistency I

Entropy-like
Author(s) Name Definition Consistency

Höhle [9] Confusion −
∑
A⊆X

m(A) logBel(A) ϕb

Yager [10] Dissonance −
∑
A⊆X

m(A) logPl(A) ϕp

Nguyen [11] Entropy of random set −
∑
A⊆X

m(A) logm(A) ϕm

Klir & Ramer [12] Discord −
∑
A⊆X

m(A) log
∑
B⊆X

m(B)
|A ∩ B|
|B| ϕkr

Klir & Parviz [13] Strife −
∑
A⊆X

m(A) log
∑
B⊆X

m(B)
|A ∩ B|
|A| ϕkp

Dubois & Prade [14] Confusion of m −
∑
A⊆X

m(A) log q(A) ϕq

δ(m) =
∑
A⊆X

m(A)

− log
∑
B⊆X

m(B)ϕ(A,B)

 Degenerate to Shannon and Hartley
entropies

0 for m({x}) = 1 (max. consistency)
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Several approaches to measuring internal inconsistency II

Consistency-based

Author(s) Name Definition

Yager [15]† Consistency 1−
∑
A⊆X

m(A)Pl(A)

George & Pal [16] Total conflict
∑
A⊆X

m(A)
∑
B⊆X

m(B)

(
1− |A ∩ B|

|A ∪ B|

)
Daniel [17] Logical inconsistency 1−max

x∈X
Pl({x})

Destercke & Burger [6] Probabilistic inconsistency‡ m(∅) = 1−max
A⊆X

Pl(A)

† Yager actually defined the corresponding consistency measure
‡ The name is derived from Destercke & Burger [6]

δ(m) = 1− ϕ(m)
Do not extend Shannon and Hartley
entropies

0 if all focal sets intersect
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Several approaches to measuring internal inconsistency III

Can we establish links between these measures?

δ(m) =
∑
A⊆X

m(A)

− log
∑
B⊆X

m(B)ϕ(A,B)

 δ(m) = 1− ϕ(m)

Two steps:

1 Total consistency of m, ϕ(m)

2 Total inconsistency of m
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Consistency measures properties

Consistency measure for a mass function

A consistency measure ϕ should satisfy the following properties:

(cs1) Bounded: ϕmin ≤ ϕ(m) ≤ ϕmax

(cs2) Extreme consistent values:

ϕ(m) = ϕmin ⇐⇒ m totally inconsistent⇐⇒ m(∅) = 1

ϕ(m) = ϕmax ⇐⇒ m totally consistent =⇒ . . .

Classically, ϕmin = 0 and ϕmax = 1

One definition of total inconsistency

Several definitions of total
consistency

Probabilistic consistency [Destercke & Burger, 2013

[6]]

Pairwise consistency [Yager, 1992 [15]]

Logical consistency [Destercke & Burger, 2013 [6]]
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N-consistency of a mass function

Definition (N-consistency)

A mass function m is said to be N-consistent, with 1 ≤ N ≤ |F|, iff ∀{An}Nn=1 ⊆ F , we have⋂
n=1,...,N

An ̸= ∅

Probabilistic consistency coincides with the 1-consistency

∀A ∈ F ,A ̸= ∅
Pairwise consistency coincides with the 2-consistency

∀(A,B) ∈ F2,A ∩ B ̸= ∅
Logical consistency coincides with the |F|-consistency⋂

A∈F
A ̸= ∅
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A family of consistency measures

Definition (N-consistency measure)

The N-consistency of a mass function m defined over X is, for 1 ≤ N ≤ |F|, defined by

ϕ(N)(m) = 1−m(N)(∅)

where m(N) = m(N−1) ∩Om is the conjunctive combination of m with itself N times, with
m(0) = mX the vacuous mass function.

Measures ϕ(N) satisfy (cs1) and (cs2) according to the definition of N-consistency

The family ϕ(N) is ordered ϕ(1)(m) ≥ ϕ(2)(m) ≥ . . . ≥ ϕ|F|

ϕ(1)(m) = max
A⊆X

Pl(A) Probabilistic consistency [Destercke & Burger, 2013]

ϕ(2)(m) =
∑
A⊆X

m(A)Pl(A) Pairwise consistency [Yager, 1992]

ϕ|F| is an alternative measure of logical consistency to ϕπ(m) = maxx∈X Pl({x})
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Example: Discrimination and monotonicity

Vessel destination prediction: X = {x1, . . . , x4}

S2 (Maritime routes): S3 (Historical port visits):
m2(x1, x2, x3) = 0.6

m2(x1, x2) = 0.2

m2(x3) = 0.2


m3(x1, x2) = 0.8

m3(x3) = 0.1

m3(x4) = 0.1
Which one among m2 and m3 is more consistent?

ϕ(1)(m) ϕ(2)(m) ϕ|F|(m) ϕπ(m)

m2 1 0.92 0.88 0.8
m3 1 0.66 0.51 0.8

1 m2 and m3 are equally consistent according to ϕ(1) and ϕπ
2 They can be discriminated thanks to ϕ(2): m2 ≻c m3

3 ϕπ does not belong to the family ϕ(N)
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Several shades of consistency

Definition (Monotonic N-consistency measure)

The monotonic N-consistency of a mass function m defined over X is, for N > 0, defined by

ϕ′(N)(m) =
(
1−m(N)(∅)

) 1
N

where m(N) = m(N−1) ∩Om, with m(0) = mX .

For every mass function m defined over X with |F| focal sets:

ϕ(1)(m) = ϕ′(1)(m) ≥ ϕ′(2)(m) ≥ . . . ≥ ϕ′|F|(m) ≥ ϕπ(m) = lim
N→∞

ϕ′(N)(m)

Measures ϕ′(N) satisfy properties (cs1) and (cs2)

The family ϕ′(N) is bounded by the measures of probabilistic and logical consistency

ϕ′|F| is an alternative measure of logical consistency to ϕπ
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Example: Monotonic consistency of destination predictions

S2 (Maritime routes):
m2(x1, x2, x3) = 0.6

m2(x1, x2) = 0.2

m2(x3) = 0.2

S3 (Historical port visits):
m3(x1, x2) = 0.8

m3(x3) = 0.1

m3(x4) = 0.1

1−m(N)(∅)
(
1−m(N)(∅)

) 1
N

ϕ(1)(m) ϕ(2)(m) ϕ|F|(m) ϕπ(m) ϕ′(1)(m) ϕ′(2)(m) ϕ′|F|(m) ϕ′(∞)(m)

m2 1 0.92 0.88 0.8 1 0.96 0.958 0.8
m3 1 0.66 0.51 0.8 1 0.812 0.801 0.8

ϕπ belongs to the family ϕ′(N):

ϕπ = ϕ′(∞)
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Extending binary consistency indexes

Consistency between N sets

A consistency index between N sets satisfies:

ϕ(N)(A1, . . . ,AN) =

{
1 if A1 = . . . = AN

0 if
⋂

i=1,...,N Ai = ∅

For ϕ = ϕp:

ϕ
(N)
p (A1, . . . ,AN) =

{
1 if

⋂
i=1,...,N Ai ̸= ∅

0 else

For Bayesian mass functions, the N-wise comparison of focal sets reduces to pair-wise
comparison

It is not true in the general case
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Total consistency of a mass function

Consistency of A relatively to m

The consistency of A relatively to a specific set m of X is defined by:

ϕ(N)(A|m) =
∑
B1⊆X

m(B1) . . .
∑

BN−1⊆X
m(BN−1)ϕ

(N)(A,B1, . . . ,BN−1)

Consistency index for one set: ϕ(1)(A|m) = ϕ(1)(A) =

{
1 if A ̸= ∅
0 if A = ∅

For N = 2 and different ϕ we get the uncertainty functions:

ϕ(A|m) =
∑
B⊆X

m(B)ϕ(A,B)

The total consistency of m is then:

ϕ(N)(m) =
∑
A⊆X

m(A)ϕ(N)(A|m)
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Consistency index for one set: ϕ(1)(A|m) = ϕ(1)(A) =

{
1 if A ̸= ∅
0 if A = ∅

For N = 2 and different ϕ we get the uncertainty functions:

ϕ(A|m) =
∑
B⊆X

m(B)ϕ(A,B)

The total consistency of m is then:

ϕ(N)(m) =
∑
A⊆X

m(A)ϕ(N)(A|m)
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General formulation of inconsistency and entropy I

Total inconsistency measure

The total inconsistency of a mass function m can be written as:

δ
(N)
a (m) =

∑
A⊆X

m(A)ψa

(
ϕ(N)(A|m)

)
∑

A⊆X m(A) is the expectation operator over the focal sets

ψa is the power function:

ψa(x) =

{
1

a−1

(
1− xa−1

)
, if a ̸= 1

− log(x) if a = 1

{
ψ2(x) = 1− x

ψ1(x) = − log(x)

a controls the decrease of the inconsistency as a function of the consistency

N controls how many sets are compared for measuring the consistency
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General formulation of inconsistency and entropy II

The choice of the measure reduces to 3 parameters a, N and ϕ
a = 1 a = 2

N = 2 N = 1 N

ϕp −
∑
A⊆X

m(A) logPl(A) 1−
∑
A⊆X

m(A)Pl(A) m(∅) = 1− max
A⊆X

Pl(A) m(N)(∅)

ϕb −
∑
A⊆X

m(A) logBel(A)

ϕq −
∑
A⊆X

m(A) log q(A)

ϕm −
∑
A⊆X

m(A) logm(A)

ϕkr −
∑
A⊆X

m(A) log
∑
B⊆X

m(B)
|A ∩ B|
|B|

ϕkp −
∑
A⊆X

m(A) log
∑
B⊆X

m(B)
|A ∩ B|
|A|

ϕj 1−
∑
A⊆X

m(A)
∑
B⊆X

m(B)
|A ∩ B|
|A ∪ B|
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2 Unary measures (internal inconsistency)
2.1 Brief survey
2.2 Grouping them together
2.3 Non-specificity and total uncertainty
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Several types of uncertainty

Uncertainty
Type

Fuzziness Ambiguity

Non-specificity Discord

Belief functions

Klir and Yuan’s typology of uncertainty [8]
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Non-specificity and total uncertainty

Non-specificity

δns(m) =
∑
A⊆X

m(A) log |A|

[Dubois & Prade, 1985 [19]]

δns(p) = 0

δns(A) = log |A| (Hartley measure)

Unique measure satisfying properties of additivity,
subadditivity, continuity, branching, normalization and
monotonicity

Total uncertainty

Probability transformations

δp(m) = −
∑
x∈X

pm(x) log pm(x)

δp(p) = Sh(p) (Shannon entropy)

δp(A) = H(A) (Hartley measure)

Weighted sum

δa,b(m) = aδ(m) + bδns(m)

δ is either a measure of internal
inconsistency or of total uncertainty

Other formulations exist as well . . .
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Several notions of external inconsistency

Binary
measures

Conflict DistanceAngle
Cross-entropy
Divergence
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Outline

3 Binary measures (external inconsistency)
3.1 Conflict
3.2 Distances
3.4 Conflict or distance?
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Conflict definitions

Definition (Total conflict [Destercke & Burger, 2013 [6]])

Two mass functions m1 and m2 are said to be totally conflicting if C1 ∩ C2 = ∅, where
Ci = ∪A∈Fi

A denote the disjunction of the focal sets of mi .

Different definitions characterize the state of non-conflict: F12 := {A ∩ B|A ∈ F1,B ∈ F2}

1-non-conflict: m1 and m2 are 1-non-conflicting iff ∀A ∈ F12,A ̸= ∅

2-non-conflict: m1 and m2 are 2-non-conflicting ∀(A,B) ∈ F2
12,A ∩ B ̸= ∅

F12-non-conflict: m1 and m2 are F12-non-conflicting
⋂

A∈F12

A ̸= ∅
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Conflict measures

Inconsistency-based measure of conflict

The conflict between m1 and m2 can be defined as the inconsistency of their conjunctive
combination:

κ(m1,m2) = 1− ϕ(m1 ∩Om2),

where ϕ is a consistency measure

To each consistency measure previously defined, corresponds a conflict measure:

Dempster’s or probabilistic conflict

κ1(m1,m2) = 1− ϕ′(1)(m1 ∩Om2) = (m1 ∩Om2)(∅)

Logical conflict

κπ(m1,m2) = 1− ϕ′(∞)(m1 ∩Om2) = 1−max
x∈X

Pl1 ∩O2({x})

A.-L. Jousselme (CS Group) Measuring inconsistency 29 October 2023 41 / 87



Several shades of conflict

If we consider the N-consistency:

Definition (N-conflict measure)

The N-conflict between two mass functions m1 and m2 for N ≥ 0, is defined by:

κN(m1,m2) = 1−
(
1− (m1 ∩Om2)

(N)(∅)
) 1

N

where m(N) denotes the N successive conjunctive combinations of m with itself.

Monotonically ordered family of conflict measures

κ1(m1,m2) ≤ κ2(m1,m2) ≤ . . . ≤ κ|F12|(m1,m2) ≤ κπ(m1,m2) = lim
N→∞

κN(m1,m2)

Encompasses existing measures of probabilistic and logical conflict

Satisfy the desirable properties considering the different definitions of non-conflict
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3 Binary measures (external inconsistency)
3.1 Conflict
3.2 Distances
3.4 Conflict or distance?
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Observations about distances between belief functions

Example (Vessel destination)

X = {x1, x2, x3, x4} = {Savona,Genoa,La Spezia,Livorno}

m1({x1, x2, x3}) = 0.8
?←→ m∗({x1, x2}) = 0.8

?←→ m2({x4}) = 0.8
m1(X ) = 0.2 m∗(X ) = 0.2 m2(X ) = 0.2

Which of m1 and m2 is closer to m∗?

Because {x1, x2} ⊂ {x1, x2, x3} and {x1, x2} ∩ {x4} = ∅, we expect

d(m∗,m1) < d(m∗,m2)

However, neither m1 nor m2 share any focal set with m∗ (except X )

d
(2)
I (m∗,m1) = d

(2)
I (m∗,m2)

The consistency between focal sets has to be considered in the distance measure
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Consistency as a norm

Minkowski family of norms Lα can measure the internal consistency of m:

ϕ
(α)
M (m) =

∑
A⊆X

f (A)α

 1
α

=

∑
A⊆X

∑
B⊆X

m(B)ϕ(A,B)

α
1
α

Euclidean norm, L2:

ϕ
(2)
M (m) =

 ∑
A,B,C⊆X

m(B)m(C )ϕ(B,A)ϕ(A,C )

 1
2

Jaccard norm for ϕ = ϕ′j :

ϕ
(2)
M,j(m) =

 ∑
A,B⊆X

m(A)m(B)
|A ∩ B|
|A ∪ B|

 1
2

Chebyshev norm, L∞:

ϕ
(∞)
M (m) = max

A⊆X
f (A)

If ϕ = ϕp:

ϕ
(∞)
M,p(m) = max

A⊆X
Pl(A) = ϕ′(1)(m)

The 1-consistency measure cöıncides
with Chebyshev norm of Pl
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Minkowski distances family

Minkowski distances

Minkowski family of distances between m1 and m2 is the Lα norm of their difference:

d
(α)
M (m1,m2) =

∑
A⊆X

∑
B⊆X

(m1 −m2)(B)ϕ(A,B)

α
1
α

, α > 1

That we can write under a vector-matrix form:

d
(α)
M (m1,m2) =

([
(Φm1 −Φm2)

α
2

]′ [
(Φm1 −Φm2)

α
2

]) 1
α

avec

Φ matrix of binary consistency indices

m mass function vector
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Lα distances

ϕ(A,B) L1 L2 L∞

ϕm δ
(2)
M,m

ϕb δ
(1)
M,b δ

(2)
M,b δ

(∞)
M,b

ϕp δ
(1)
M,p δ

(2)
M,p

ϕp(x ,B) δ
(1)
M,px δ

(∞)
M,px

ϕkr δ
(∞)
M,kr

ϕkrx(x ,B) δ
(2)
M,krx δ

(∞)
M,kr

ϕmf δ
(2)
M,mf

ϕj δ
(2)
M,j

ϕS δ
(2)
M,S

ϕF δ
(2)
M,F

Main Lα distances

d
(2)
M,p(m1,m2) =

∑
A⊆X

(Pl1(A)− Pl2(A))
2

 1
2

= d
(2)
M,b(m1,m2)

d
(2)
M,krx(m1,m2) =

(∑
x∈X

(BetP1({x})− BetP2({x}))2
) 1

2

d
(∞)
M,p (m1,m2) = max

A⊆X
(Pl1(A)− Pl2(A))

d
(∞)
M,px(m1,m2) = max

x∈X
(Pl1({x})− Pl2({x}))
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Euclidean Jaccard distance

Jaccard distance

The Euclidian Jaccard distance between two mass functions m1 and m2 is defined by:

d
(2)
M,j(m1,m2) =

(
ϕ
(2)
j (m1) + ϕ

(2)
j (m2)− 2ϕ

(2)
j (m1,m2)

) 1
2

ϕ
(2)
j (m1,m2) is Jaccard inner product:

ϕ
(2)
j (m1,m2) =

∑
A,B⊆X

m1(A)m2(B)
|A ∩ B|
|A ∪ B|

ϕj(A,B) =
|A∩B|
|A∪B| similarity between A and B

d
(2)
M,j is a full metric
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Other distances

Hellinger distance family e.g., [Ristic & Smets, 2006 [25]]

d (H)(m1,m2) =

1−
∑

A,B⊆X
(m1(A)m2(B)ϕ(A,B))

1
2

 1
2

Information-based distances family e.g., [Denœux, 2001 [26]]

d(m1,m2) = |δ(m1)− δ(m2)|

where δ is a unary uncertainty measure

Belief-Interval distance [Han, Dezert, Yang, 2014 [27]]

Wasserstein distance [Bronevich and Rozenberg, 2021 [28]]

Distance on ordered sets [Martin, 2022 [29]]
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Inner product and cross-entropy

Reminder: General formulation for N = 2

δ
(2)
a (m) =

∑
A⊆X

m(A)ψa

(
ϕ(N)(A|m)

)

If we use two mass functions m1 and m2:

δ
(2)
a (m1,m2) =

∑
A⊆X

m1(A)ψa

(
ϕ(2)(A|m2)

)
For m1 = m2 = m and N = 2, we retrieve unary measures: δ

(2)
a (m,m) = δ

(2)
a (m)

For a = 2:
δ
(2)
2 (m1,m2) = 1−

∑
A,B⊆X

m1(A)m2(B)ϕ(A,B)

ϕ = ϕp −→ Dempster’s conflict
ϕ = ϕj −→ 1 - Jaccard inner product
ϕ = ϕm −→ Wen’s cosinus (unnormalized) Wen et al., 2000 [30]
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Consistency as a norm (bis)

Reminder: Monotonic N-consistency measure

ϕ′(N)(m) =
(
1−m(N)(∅)

) 1
N

The state of total inconsistency is such that:

m(∅) = 1⇐⇒ Pl(A) = 0, ∀A ⊆ X

Distance to total inconsistency

ϕ′(1)(m) = max
A⊆X

Pl(A) = ϕ
(∞)
M,p(m) = d

(∞)
M,p (m,m∅)

ϕ′(∞)(m) = max
x∈X

Pl({x}) = ϕ
(∞)
M,px(m) = d

(∞)
M,px (m,m∅))

The consistency of a mass function can be seen as its distance to the totally
inconsistent knowledge state
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Conflict and distance

The conflict between m1 and m2 amounts to 1 minus the distance between their conjunctive
combination and the totally inconsistent knowledge state

Conflict and distance {
κ1(m1,m2) = 1− d

(∞)
M,p (m1 ∩Om2,m∅)

κπ(m1,m2) = 1− d
(∞)
M,px (m1 ∩Om2,m∅)

The Euclidean distance between plausibilities quantifies how much m1 and m2 are in
conflict with the same sets (according to κ1)

d
(2)
M,p(m1,m2) =

∑
A⊆X

(κ1(m1,mA)− κ1(m2,mA))
2

 1
2
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Combining conflict and distance

Distance and conflict capture different notions

To capture the “total discrepancy” between belief functions:

Two-dimensional measures (e.g., [Liu, 2006 [31]]):

δ2D =
(
m(∅); d (∞)

kr (m1,m2)
)

Product [Martin, 2012 [7]]:

δ×(m1,m2) = (1− Inc(m1,m2)).d
(2)
M,j(m1,m2)

with Inc(m1,m2) =
1

|F1|.|F2|
∑

A∈F1,B∈F2
ϕb(A,B) is inclusion index between m1 and m2

Can be generalized to other pairs of (conflict; distance) measures
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Measures properties

Distance Conflict

(δ1) Boundedness δmin ≤ δ(m1,m2) ≤ δmax ×
(δ1)’ Positivity 0 ≤ δ(m1,m2) × ×
(δ2)’ Extreme min. value δmin iff m1 and m2 minimally distant / in conflict × ×
(δ2)” Extreme max. value δmax iff m1 and m2 maximally distant / in conflict (×) ×
(δ3) Symmetry δ(m1,m2) = δ(m2,m1) × ×
(δ4) Insensitivity to refinement δ(m1,m2) = δ(mρ(1),mρ(2)) ×
(δ5) Imprecision monotonicity m1 ⊑s m′

1 ⇒ δ(m1,m2) ≥ δ(m′
1,m2) ×

(δ6) “Ignorance is bliss” δ(mX ,m) = 1− ϕ(m) ×
(δ7) Reflexivity δ(m,m) = 0 ×
(δ8) Separability δ(m1,m2) = 0 ⇒ m1 = m2 ×
(δ9) Triangle inequality δ(m1,m2) ≤ δ(m1,m3) + δ(m3,m2) ×
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Reflexivity

Reflexivity

δ(m,m) = 0

Generally not satisfied by conflict measures. For instance,

(m ∩Om)(∅) ̸= 0

Relaxing reflexivity allows to express a notion of “internal conflict” (or
internal inconsistency)
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Separability

Separability

δ(m1,m2) = 0⇒ m1 = m2

Not required for conflict measures

Satisfied by (full) metric measures

Not satisfied by pseudo-metric measures
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“Ignorance is bliss”

m cannot be more in conflict with mX (total ignorance) than its internal inconsistency

“Ignorance is bliss”

δ(m,mX ) = 1− ϕ(m)

ϕ(m) is a measure of internal inconsistency

Typically required for conflict measures

Not required for distance measures

A.-L. Jousselme (CS Group) Measuring inconsistency 29 October 2023 61 / 87



Conflict or distance? Which measure?

To select the proper measure, we have the following degrees of freedom:

The desirable properties (separability, reflexivity, “ignorance is bliss”, etc) conveying
notions of either distance or conflict

The consistency degree between focal elements and their meaning

The meaning of the measure (e.g., value of α in Minkowski family, angle versus distance,
conflict versus distance, . . .
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Information quality dimensions

Information quality

Unary

Specificity

Consistency

Binary

Correctness
Credibility

Relevance

Uncertainty (N-nary)
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Outline

4 Some applications
4.1 Correctness
4.2 Credibility
4.3 Relevance
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Correctness

Correctness refers to a reference mass function representing the “truth”

Definition (Correctness assessment)

The correctness of m relatively to a reference m∗ is assessed as

Acc(m) = f (δ(m,m∗))

where δ is a binary measure between mass functions, f is a reverse function and m∗ represents
the true value

m∗ can be categorical, focused on a singleton m∗({x}) = 1

m∗ can focus on any other set (m∗
A does not contain any discord (inconsistency), but may

contain some non-specificity)

m∗ can be any other mass function
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Correctness assessment - Distance to solution

Example: Vessel recognition

X = {56, 57, 58, 59, 60} list of vessel IDs
Four sources, {si}, i = 1, . . . , 4 provide
evidence about features which match or
not the vessels’ features

Sequential fusion mt = mt−1 ⊕m
(i)
t

The correctness is estimated based on the
distance of mt to a m∗

Convergence toward A∗ = {57, 58, 59}
which is the best answer

|A| ≠ 1 denoting some non-specificity

Elements of A cannot be discriminated
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Correctness assessment - Mass function approximation

Example: Vessel recognition

To keep the number of focal sets under
control, an approximation algorithm
replaces mt by m̃t

A maximum of 8 focal sets are kept

The correctness of m̃t is estimated based
on its distance to mt

Two approximation algorithms are
compared: Tessem’s k-l-x algorithm and
Bauer’s D1 algorithm

The D1 algorithm provides the closest
approximation
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Credibility

Credibility refers here to how much a given mass is consistent within a group of other mass
functions (without any access to ground truth)

Definition (Credibility assessment)

The credibility of m relatively to a set of other mass functions mi is assessed as

Cre(m) = f (δ(m, {mi}i ))

where δ is a binary measure between mass functions, {mi}i is a set of mass functions and f is
a reversing function

The highest δ(m, {mi}i ) the lower its credibility

Example of credibility measure:

Cre(m) =
(
[1− δ(m,m⊕)]

λ
) 1

λ

where m⊕ = ⊕I
i=1,m ̸=mi

mi and λ > 0 [Martin et al., 2008 [18]]

A.-L. Jousselme (CS Group) Measuring inconsistency 29 October 2023 70 / 87



Credibility assessment - Faulty source

Example: Vessel destination prediction

X = {Genoa,La Spezia,Livorno}
Four sources, {si}, i = 1, . . . , 4 provide
evidence for or against destinations

The inconsistency level suggests some
disagreement between sources

0 0.2 0.4 0.6 0.8 1

Livorno

La Spezia

Genoa

Evidence for: Bel(x)

Ignorance m(X )

Evidence against: Bel(x)

Inconsistency m(∅)

Which source provided inconsistent
information?

Credibility of mi derived from consistency
measure (here, Yager)

Information from Port capacity source
is maximally credible

Information from Maritime routes

source is the least credible

0 0.2 0.4 0.6 0.8 1

AIS destination

Maritime routes

Port capacity

Port visits

A.-L. Jousselme (CS Group) Measuring inconsistency 29 October 2023 71 / 87



Credibility assessment - Dynamic discounting

Example: Vehicle recognition
Fusion problem with possible
missassociation

Distance measures are used to assess the
information credibility

Non-credible pieces of information are
discounted or discarded from the fusion
process

Several credibility measures are compared
based on the final pignistic probability of
the targeted object
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Relevance

Two notions of relevance:
1 impact of a piece of evidence on previous knowledge
2 relatively to another state of knowledge (retrieval or matching)

Definition (Relevance assessment)

The relevance of m is assessed relatively to another state of knowledge m′:

Rel(m) = f
(
δ(m,m′)

)
where δ is a binary measure between mass functions and f is a reversing function

m is relevant if for instance

δ(m,m0 ∩Om) ̸= 0, m0 is a previous state of knowledge

δ(m,mi ) ≤ τ , mi is a stored knowledge item

δ(m,mi ) minimum, mi is a stored knowledge item
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Relevance assessment - Explaining complex models

Example: Threat assessment

Source (i) Reliab. Evidence

AIS High AIS received

Classifier "Type" Medium Research vessel

AIS "Type" High Highly capable

AIS kinematics Medium Loitering, Stopped

Intelligence Medium ID ‘‘Assumed Friend’’

AIS analyzer High Inconsistent AIS

(Example of reports and sources)

X = {Threat;¬Threat}

−0.2 −0.1 0.1 0.2

−0.2

−0.1

0.1

AIS received

Kinematics

Vessel type
ID ‘‘Assumed Friend’’

Inconsistent AIS

̂Spec(m)

̂Cons(m)

Global impact of each report on final m

Specificity and consistency measures
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Relevance assessment - Explaining complex models

Example: Threat assessment

Source (i) Reliab. Evidence

AIS High AIS received

Classifier "Type" Medium Research vessel

AIS "Type" High Highly capable

AIS kinematics Medium Loitering, Stopped

Intelligence Medium ID ‘‘Assumed Friend’’

AIS analyzer High Inconsistent AIS

(Example of reports and sources)

Inconsistent AIS report increases the
global inconsistency and reduces the
specificity

ID ‘‘Assumed Friend’’ report also
increases the global inconsistency but
increases the specificity (more
informational content)

X = {Threat;¬Threat}
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Relevance assessment - Information retrieval

Example: Uncertainty representation for IR with missing data

Problem: Retrieve the set of relevant items rq to a given query q from an evidential database

rq = {z ∈ Z|δ(z, q) ≤ τ}

where τ is a threshold
Missing data are replaced by belief
functions with different models (classical
sets, probabilities, belief functions)

δ = d
(2)
M,j is the Jaccard metric

Probability of missingness is varied and
F -score is assessed

The best model is a simple support belief
function focused on a singleton
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Conclusions I

Consistency

A notion of consistency is at the heart of many
measures of uncertainty, both unary and binary

Consistency between N sets (definition and indexes)
Internal consistency of a mass function
Consistency as a norm: Distance to total
inconsistency m(∅) = 1
Reversed into inconsistency through ψa function
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Conclusions II

Internal inconsistency

Two notions:

distribution of masses over focal sets
interaction between focal sets

General formulations reduce the choice of the
measure to a small number of parameters

N, the number focal sets in the interaction
ϕ, the consistency index between sets
a, the decreasing parameter of the reversing
function

Monotonic family of measures ϕ′(N)(m)
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Conclusions III

External inconsistency

Family of conflict measures with existing
measures as lower and upper bounds

Distance and conflict measure different notions of
discrepancy between belief functions

Conflict is defined as the inconsistency resulting
from their conjunctive combination
Distance is defined as the consistency (norm) of
their difference

Links between some conflict and distance
measures

Other measures: cross-entropy, “angle”,
divergence
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Conclusions IV

In practice

Choice of the measure to be guided by semantics and
properties

Distinction between measures of (1) non-specificity, (2)
(internal) inconsistency and (3) total uncertainty

Binary measures allow to quantify notions such as
“correctness”, “credibility” or “relevance”

Criteria to refine the fusion process

Measures of performance, information retrieval, pattern
matching, explanations, loss functions in classifiers, . . .
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[34] M. C. Florea, A.-L. Jousselme, and É. Bossé. Dynamic estimation of evidence discounting rates based on
information credibility. RAIRO Operations Research, 44(4):285–306, October 2011.

[35] P. Kowalski, M. Zocholl, and A.-L. Jousselme. Explaining the impact of source behaviour in evidential reasoning.
Information Fusion, SI: Advances in Explainable (XAI) and Responsible (RAI) Artificial Intelligence, 2021. In press.

[36] A.-L. Jousselme and P. Maupin. An evidential pattern matching approach for vehicle identification. In Denoeux and
Masson, editors, Advances in Intelligent and Soft Computing 164, Proc. of the 2nd Int. Conf. on Belief Functions,
pages 45–52, Compiegne, France, May 2012. Springer-Verlag.

A.-L. Jousselme (CS Group) Measuring inconsistency 29 October 2023 86 / 87



Questions ?

Anne-Laure Jousselme
Anne-Laure.Jousselme@csgroup.eu

A.-L. Jousselme (CS Group) Measuring inconsistency 29 October 2023 87 / 87


	Outline
	Preamble
	Notations
	Some basic measures
	Consistency as central concept

	Unary measures (internal inconsistency)
	Brief survey
	Grouping them together
	N-consistency: Properties, definitions and measures
	Consistency and entropy

	Non-specificity and total uncertainty

	Binary measures (external inconsistency)
	Conflict
	Distances
	Other distances
	Conflict or distance?
	Distance to total inconsistency
	Combining conflict and distance
	About properties

	Conflict or distance? Which one?

	Some applications
	Correctness
	Credibility
	Relevance

	Conclusions
	References

